NEW DRUGS

Pravit Akarasereenont, MD PhD

Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700.

This issue new drugs provides an insight into the latest developments in drug discovery through brief synopses of recent presentations and publications.

Selective COX-2 inhibitors

The widely used nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the cyclooxygenase (COX) which converts arachidonic acid into prostaglandins (PGs). COX exists in at least two isoforms. COX-1 (constitutive isoform) is present constitutively under physiological condition. COX-2 (inducible isoform) is induced in various cell types by mitogens and cytokines including endotoxin. The marketed NSAIDs are differential effects on COX-1 and COX-2. PGs produced by COX-1 have important role in normal platelet, gastric and renal function. As a consequence, inhibition of COX-1 results in unwanted side effects. The developing selective COX-2 inhibitors may offer an advantage over the existing non-selective NSAIDs by reducing the associated renal and gastric toxicity.

Some of these new drugs are:

1. A novel series of 1,2-diarylcyclobutenes has evaluated as potential selective COX-2 inhibitors. 4,4-dime-thyl-2-phenyl-3-[4-(methylsulphonyl)phenyl]cyclobutenone (figure 1) was shown to be particularly selective for COX-2 and orally active in the rat paw edema model (ED$_{50}$ = 2.4 mg/kg). (Friesen and coworkers. Bioorg Med Chem Lett 1996; 6: 2677-2682).

2. The agents based on the synthesis and evaluation of series of 1,5-diarylpyrazones containing either a sulphone or sulphonamide moiety as COX-1 and COX-2 inhibitors have been described. The series of benzothiopyrano-pyrazoles, exemplified by figure 2, were found to be both selective COX-2 inhibitors in vitro and antiinflammatory agents in vitro in the air-pouch model of inflammation. (Bertenshaw and coworkers. Bioorg Med Chem Lett 1996; 6: 2827-2830).
3. DuPont Merck (Wilmington, DE, USA) has described the new class of COX-2 inhibitors, the terphenyls, which they discovered while seeking to improve the in vitro selectivity of their selective COX-2 inhibitor, diarylthio-phen (figure 3 DuP697). The terphenyl compound (figure 4) was identified as a potential lead compound having good COX-2 selectivity and a better pharmacokinetic profile than DuP697. (Pinto and coworkers. Bioorg Med Chem Lett 1996; 6: 2907-2912).

4. The agents based on the synthesis and evaluation of a series of 3,4-diarylpyrazoles as potential COX-2 inhibitors have been described. A number of these compounds, exemplified by figure 5, were found to be potent selective inhibitors of COX-2 and shown to have oral antiinflammatory activity in a rat carrageenan-induced paw edema assay. (Pinning and coworkers. Bioorg Med Chem Lett 1996; 7: 2122-2124).

5. A group from Searle Research and Development (Skokie, IL, USA) have described the identification of 1,2-diarylpyrroles as potent, selective inhibitors of COX-2 (IC₅₀ = 15-100 nM). In vivo testing of these compounds in the rat carrageenan induced paw edema model established that the compounds were orally active anti-inflammatory compounds with the most potent inhibitor of edema (figure 6) having an ED₅₀ of 4.7 mg/kg and a 200-fold selectivity for COX-2 over COX-1. (Khanne and coworkers. J Med Chem 1997; 40: 1619-1633).
6. The agents based on the synthesis and evaluation of 1,2-diaryl-imidazoles as COX-2 inhibitors have been described. These compounds were also found to be potent and highly selective inhibitors of the human COX-2 enzyme. Several of these compounds, exemplified by figure 7, were found to exhibit excellent inhibition in the adjuvant-induced arthritis model (ED$_{50} = 0.02$ mg/kg). The 1,2-diarylimidazoles were also shown to inhibit carrageenan-induced rat paw edema and hyperalgesia, with several orally active compounds showing no gastrointestinal toxicity in either the rat or mouse at up to 200 mg/kg, suggesting that these compounds offer potential as anti-inflammatory agents with reduced side effects. (Khanne and coworkers. *J Med Chem* 1997; 40: 1634-1647).