สารฟินอลิกและฟลาโวนอยด์และฤทธิ์ต้านเชื้อแบคทีเรียของสารสกัดเอทานอลของพรอพอลิส

บัทมา ชัยเลิศวณิชกุล 1, ธิติมา นามสิริกุล 2, ธีระศักดิ์ ด ารงรุ่งเรือง 3, จอมใจ พีรพัฒนา 4*

1 รองศาสตราจารย์ ภาควิชาทันตกรรมบูรณะ คณะทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่น อำเภอเมือง จังหวัดขอนแก่น 40002
2 ทันตแพทย์ โรงพยาบาลกำแพงแสน จังหวัดนครปฐม 73140
3 รองศาสตราจารย์ ภาควิชาวินิจฉัยโรคช่องปาก คณะทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่น อำเภอเมือง จังหวัดขอนแก่น 40002
4 รองศาสตราจารย์ ภาควิชาเภสัชศาสตร์ ศูนย์วิจัยและพัฒนาผลิตภัณฑ์สุขภาพจากสมุนไพร คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น อำเภอเมือง จังหวัดขอนแก่น 40002

*ติดต่อผู้นิพนธ์ : คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น อำเภอเมือง จังหวัดขอนแก่น 40002
โทรศัพท์ 086-862-9401
โทรสาร 043-362-092
อีเมล์ jomsuj@kku.ac.th

บทคัดย่อ
สารฟินอลิกและฟลาโวนอยด์และฤทธิ์ต้านเชื้อแบคทีเรียของสารสกัดเอทานอลของพรอพอลิส

บัทมา ชัยเลิศวณิชกุล 1, ธิติมา นามสิริกุล 2, ธีระศักดิ์ ด ารงรุ่งเรือง 3, จอมใจ พีรพัฒนา 4*

ว. เภสัชศาสตร์อีสาน 2560; 13(3) : 59-67
รับบทความ : 30 มกราคม 2560
ตอบรับ : 29 สิงหาคม 2560

การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาคุณสมบัติของสารสกัดพรอพอลิสไทย เพื่อพัฒนาเป็นวัสดุปิดทับเนื้อเยื่อในของฟันมุขย์ โดยนำพรอพอลิสที่ขูดได้จากรังผึ้งในจังหวัดเลยมาสกัดด้วย 95% เอทานอล วิเคราะห์ปริมาณฟีนอลิกรวมโดยวิธี Aluminium chloride colorimetric method และฟลาโวนอยด์รวมโดยวิธี 2,4- dinitrophenylhydrazine colorimetric method ผลการศึกษาสารสกัดพรอพอลิสไทยมีฟีนอลิก 8.17 มิลลิกรัม/มิลลิลิตร และฟลาโวนอยด์ 2.45 มิลลิกรัม/มิลลิลิตร สารสกัดพรอพอลิสไทยสามารถต้านเชื้อเสตร็ปโตคอคคัสมิวแทนส์และแลคโตบาซิลลัสคาเซไอ โดยความเข้มข้นต่ำสุดที่ยับยั้งเชื้อเสตร็ปโตคอคคัสมิวแทนส์ และแกลคโตบาซิลลัสคาเซไอ คือ 22.5 มิลลิกรัม/มิลลิลิตร และ 11.25 มิลลิกรัม/มิลลิลิตร สารสกัดพรอพอลิสไทยไม่เป็นพิษต่อเนื้อเยื่อในของฟันมุขย์ที่เวลา 6, 12, 24 และ 72 ชั่วโมง ผลจากการศึกษาเด่นพิเศษ สารสกัดพรอพอลิสไทยมีคุณสมบัติที่เหมาะสมในการพัฒนาเป็นวัสดุปิดทับเนื้อเยื่อในของฟันมุขย์ เนื่องจากสามารถยับยั้งเชื้อเสตร็ปโตคอคคัสมิวแทนส์ และแกลคโตบาซิลลัสคาเซไอซึ่งเป็นเชื้อที่พบบ่อยในเนื้อเยื่อของฟันมุขย์ติดเชื้อ และไม่เป็นพิษต่อเซลล์ สารสกัดพรอพอลิสไทย องค์ประกอบทางเคมี และฤทธิ์ต้านจุลชีพ ความเป็นพิษต่อเซลล์ สารสกัดพรอพอลิสไทย องค์ประกอบทางเคมี และฤทธิ์ต้านจุลชีพ ความเป็นพิษต่อเซลล์
Phenolic and flavonoids contents and antibacterial activity of ethanolic extract of propolis.

Pattama Chaileertvanitkul1, Thitima Namsirikul2, Teerasak Damrongrungruang3 and Jomjai Peerapattana4*

1Associate Professor, Department of Restorative Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand
2Dentist, Kamphaeng Saen Hospital, Nakhon Pathom, 73140, Thailand
3Associate Professor, Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen 4002, Thailand
4Associate Professor, Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand

* Corresponding author : Tel.: +66 86 862 9401; fax: +66 43 362 092. E-mail address: jomsuj@kku.ac.th

Abstract

Phenolic and flavonoids contents and antibacterial activity of ethanolic extract of propolis.

Pattama Chaileertvanitkul1, Thitima Namsirikul2, Teerasak Damrongrungruang3 and Jomjai Peerapattana4*

IJPS, 2017; 13(3) : 59-67

Received : 30 January 2017 Accepted : 29 August 2017

The aim of this work was to study properties of Thai propolis extract (TPE) for the development of dental pulp capping material. Raw propolis materials were collected from Nong Khai province and extracted using 95% ethanol. Total flavonoid contents were determined by Aluminum chloride colorimetric method and 2,4-Dinitrophenylhydrazine colorimetric method. Total phenolic compounds were determined using Folin-Ciocalteau colorimetric method. The results showed that TPE had flavonoids 10% (w/w of TPE) and phenolic 2.95% (w/w of TPE). TPE had an inhibition effect against both Streptococcus mutans and Lactobacillus casei. The minimum inhibitory concentration of TPE was 22.5 mg/ml and 11.25 mg/ml for Streptococcus mutans and Lactobacillus casei, respectively. The minimum bactericidal concentration of TPE was 45 mg/ml for both bacteria. TPE concentration 90 mg/ml (two-fold of minimum bactericidal concentration which planned for pharmaceutical preparation) had no cytotoxicity on human dental pulp cells at 6, 12, 24 and 72 hours. The results of this study suggest that TPE is suitable for development of dental pulp capping material because it had bactericidal effect against Streptococcus mutans and Lactobacillus casei which were often found bacteria in infected human dental pulp and it had no cytotoxicity on human dental pulp cells.

Keywords: Thai propolis extract, chemical composition, antimicrobial activity and cytotoxic effect

Introduction

Dental caries is one of the most prevalent diseases affecting the calcified tissues of the teeth. Although many acid producing microbes have been isolated from oral flora, Streptococci and Lactobacilli have been considered as significant ones in contributing to the initiation and progression of deep dental caries respectively and diffusing through tubular dentine to pulp chamber (Martin et al., 2002; Munson et al., 2004; Chhour et al., 2005; Featherstone 2008; Ophori et al., 2010; Neelakantan et al., 2012). Removal of softened dentin would further involve pulp exposure, and hence it is imperative to preserve the vitality of the pulp by meticulous conservative approach by using effective medicaments rather than performing root canal treatment. Vital pulp therapy is the choice of treatment for
maintain pulp vitality and function of dentine-pulp complex (Tziafas et al., 2000). It consists of indirect pulp capping, direct pulp capping, partial pulpotomy and full pulpotomy. Success of vital pulp therapy depends on operative procedure to remove infection, treatment modality, materials and bacterial-tight seal restoration which promote pulp tissue healing and repairing (Kakehashi et al., 1965; Mejare and Cvek 1993).

Calcium hydroxide is a gold standard of pulp capping material for vital pulp therapy. There are many advantages such as bactericidal, activated formation of reparative dentine, easy to use, long-term success rate. However, this material has some drawbacks. Firstly, it lacks dentin adhesive properties due to its softness and solubility (Pereira et al., 1990). Secondly, the dentin bridge induced by this material is porous hence there is potential for bacterial penetration (Kitasako et al., 2008). Thirdly, calcium hydroxide has limited antibacterial properties toward E. faecalis, Candida and Actinomyces species which are associated with persistent disease after root canal treatment (Cox et al., 1996). Lastly, calcium hydroxide is toxic to pulp cells (Al-Shaher et al., 2004). Due to these disadvantages, a superior material has been sought after. Mineral trioxide aggregate (MTA) is recently candidate for pulp capping material. It is biocompatible, bactericidal, well sealing ability and hard tissue inductive. However, it was not widely used because of expensive cost, long time setting and few long term studies.

At present, the study of the use of extract from natural origin is increasing. Propolis, a natural extract of beehives, consists of various chemical compounds depending on bee strain, local flora, geographic and season. Main chemical compounds are flavonoids, phenolic and aromatic compounds (Kumazawa et al., 2004; Parolia et al., 2010). Propolis has antimicrobial activities (Ikeno et al., 1991; Uzel et al., 2005; Mohammadzadeh et al., 2007; Liberio et al., 2009), anti-inflammatory (McLennan et al., 2008) and low toxicity (Burdock 1998; Al-Shaher et al., 2004). There are many studies of propolis extract for dental use including direct pulp capping material (Parolia et al., 2010; Ahangari et al., 2012). However, there was not a report of Thai propolis extract (TPE), therefore, the aim of this study was to investigate the chemical compositions, antibacterial properties and cytotoxicity effect of TPE.

Materials and methods

1. Extraction of Thai propolis

Raw Thai propolis materials were collected from Apis mellifera bee-hives (Figure 1), fed with corn and banana, from Nong-Khai province, Thailand. It was chopped into small pieces and extracted using 95% ethanol (1 g: 5 ml) in orbital shaker incubator (MRC, Holon, Israel) at 25°C, 200 rpm for 5 days. The mixture was filtered through Whatman™ no.1 filter paper (Whatman Inc., Piscataway, USA), stored at -20°C for 48 hours and then filtered again. The filtrate was evaporated using rotary evaporator (Eyela, Tokyo Rikakikai, Tokyo, Japan) at 40°C and stored at 4°C, protected from light. The concentrated filtrate was dried using freeze dryer (Alpha 2-4 LD plus, Christ, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) and the percentage of yield was calculated. The product was named Thai propolis extract (TPE).

![Figure 1 Raw Thai propolis materials.](image-url)
2. Determination of flavonoid and phenolic contents

2.1 Total flavonoid contents

Flavonoids consist of 4 major chemical groups i.e. flavones and flavonols reacted well with aluminum chloride colorimetric method, and flavanones and flavanones reacted better with 2,4-Dinitrophenylhydrazine. Aluminum chloride colorimetric method was modified from the procedure described by Chang et al. (2012). TPE was diluted to 20 mg/ml in absolute ethanol. Aliquots of 0.5 ml of quercetin (Calbiochem, EMD chemicals, Germany) was mixed with absolute ethanol 4.3 ml, 10% aluminum chloride 0.1 ml (QRëC™, QREC (Asia) SDN BHD, Malaysia) and 1 M of potassium acetate 0.1 ml (QRëC™, Brightchem SDN BHD, Malaysia). Mixed solution was stored at 25ºC for 30 minutes. The light absorbance of the solution was measured at wavelength 415 nm using multifunction microplate reader (Varioskan Flash, Thermo Fisher Scientific, USA). The light absorbance of quercetin (Calbiochem) 60, 90, 120, 150 and 180 µg/ml in absolute ethanol was also measured and the standard calibration curve was plotted.

Flavanones and flavanones were determined by 2,4-Dinitrophenylhydrazine colorimetric method modified from the procedure described by Cvek et al. (2007). TPE was diluted to 20 mg/ml in absolute ethanol. Aliquots of 1 ml of (±)-naringenin (Sigma-Aldrich, USA) was mixed with 1% 2,4-dinitrophenylhydrazine 2 ml and methanol 2 ml, incubated at 50ºC for 50 minutes. After cooling, 10% potassium hydroxide (QRëC™, Brightchem SDN BHD, Malaysia) in 70% methanol 5 ml was mixed at 25ºC for 2 minutes. The resulting solution 1 ml was mixed with methanol 5 ml and centrifuged at 1,610 g for 10 minutes using centrifuge machine (Sorvall® RC 6 plus, Thermo Scientific™, Thermo Fisher Scientific, USA). The light absorbance of supernatant was measured at wavelength 495 nm using multifunction microplate reader. The light absorbance of (±)-naringenin (Sigma-Aldrich) 1,200, 1,400, 1,600, 1,800 and 2,000 µg/ml in absolute ethanol was also measured and the standard calibration curve was plotted.

2.2 Total phenolic compounds

Total phenolic compounds were determined by Folin-Ciocalteau colorimetric method modified from the procedure described elsewhere (Vitchayakitti et al., 2009). TPE was diluted to 20 mg/ml in absolute ethanol. Aliquots of 0.1 ml of gallic acid (Sigma-Aldrich, USA) was mixed with Folin-Ciocalteau reagent (Carlo Erba Reagents, Rodano, Milan, Italy) 0.5 ml and distilled water 7 ml. Mixed solution was kept at 25ºC for 8 minutes then 20% Sodium carbonate (Univar, Ajax Finechem Pty Ltd, Australia) was added and incubated for 2 hours in dark room. The light absorbance of supernatant was measured at wavelength 765 nm using multifunction microplate reader. The light absorbance of gallic acid (Sigma-Aldrich) solutions 400, 450, 500, 550 and 600 µg/ml in absolute ethanol were measured and the standard calibration curve was plotted.

3. Antimicrobial activity

Bacterial strains used in this study were Streptococcus mutans ATCC 25175T (Department of Medical Sciences Culture Collection, Bangkok, Thailand) and Lactobacillus casei BCC 36987 (Thailand Institute of Scientific and Technological Research Culture Collection, Bangkok, Thailand). Preparation of inoculums were modified from method for dilution antimicrobial susceptibility test for bacteria that grow aerobically (Clinical and Laboratory Standards Institute 2006). S. mutans and L. casei were transferred from the stock culture to Mitis Salivarius agar (BD, Becton, Dickinson and company, France) and de Man, Rogasa and Sharpe agar (Himedia®, HiMedia Laboratories, India) respectively with Cross streak technique and incubated at 37ºC for 24 hours. Single colony of S. mutans was transferred to the Todd Hewitt broth (BD, Becton, Dickinson and company, France) and incubated at 37ºC for 24 hours. Single colony of L. casei was transferred to de Man, Rogasa and Sharpe broth (Himedia®, HiMedia Laboratories, India) and incubated at 37ºC for 48 hours. The suspension was adjusted to the McFarland 0.5 turbidity standard (1.5 x 10^8 CFU/ml).
Antimicrobial susceptibility test of TPE was investigated by agar disc diffusion method modified from Kashi et al., (2011). Petridishes (100 mm diameter) were filled with Mitis Salivarius agar and de Man, Rogasa and Sharpe agar for S. mutans and L. casei, respectively. Sterile cotton swabs were dipped into the inoculum of each suspensions and three-dimension swabbed to agar surfaces. Aliquots of 20 µl of TPE, absolute ethanol and 2% chlorhexidine digluconate were dropped on paper discs (6 mm diameter and 1 mm thick) then placed on the agars plates and incubated at 37ºC for 24 and 48 hours for S. mutans and L. casei, respectively. Absolute ethanol was used as a negative control and 2% chlorhexidine digluconate was used as a positive control. Inhibition zones (the diameter of outside margin of microbial growth minus the diameter of the paper discs) were measured 3 times. The tests were performed three replicates for each bacteria.

The minimum inhibitory concentration (MIC) of TPE was investigated by two-fold serial dilution method modified from Kashi et al., (2011). Aliquots of 100 µl TPE was diluted with Todd Hewitt broth for S. mutans and de Man, Rogasa and Sharpe broth for L. casei and added with 100 µl of each bacterial suspensions McFarland 0.5 turbidity standard. The sterile broth 200 µl was used as a negative control. The sterile broth 100 µl with 100 µl of each bacterial suspensions McFarland 0.5 turbidity standard was used as a positive control. The plates were incubated at 37ºC, 5% CO₂ for 24 and 48 hours for S. mutans and L. casei, respectively. The light absorbance was measured at wavelength 600 nm using multifunction microplate reader. The tests were performed triplicate for each bacteria.

The minimum bactericidal concentration (MBC) of TPE was investigated by method modified from Kashi et al., (2011). Aliquots of 5 µl of various concentrations of TPE which no visible growth of bacteria from previous tests were inoculated to the Mitis Salivarius agar for S. mutans and de Man, Rogasa and Sharpe agar for L. casei. The plates were incubated at 37ºC, 5% CO₂ for 24 and 48 hours for S. mutans and L. casei, respectively. The tests were performed triplicate for each bacteria.

4. Cytotoxicity of TPE

This study was approved by the office of the Khon Kaen University ethics committee to human research. Human dental pulp cells were obtained from extracted sound human premolar tooth. The tooth was immediately immersed in Dulbecco’s Modified Eagle Medium (BioWhittaker®, Lonza Walkersville, Walkersville, USA) with 10% fetal bovine serum (BioWhittaker®, Lonza Walkersville, Walkersville, USA), penicillin G (BioWhittaker®, Lonza Walkersville, Walkersville, USA) 100 µl/ml, streptomycin (BioWhittaker®, Lonza Walkersville, Walkersville, USA) 100 µl/ml and amphotericin B (BioWhittaker®, Lonza Walkersville, Walkersville, USA) 25 µl/ml. The tooth was split longitudinally and pulpal tissue was cut into small pieces and cultured in tissue culture dish with the medium at 37ºC, 5% CO₂ and 95% humidity. Dental pulp cells were subcultured and cells between third to eighth passage were used (Chaipanha et al., 2013).

The dental pulp cells (2 × 10⁵ cells/ml) in 50 µl Dulbecco’s Modified Eagle Medium (BioWhittaker®) with 10% fetal bovine serum (BioWhittaker®) were incubated at 37ºC, 5% CO₂ and 95% humidity for 24 hours. The medium was changed to serum-free medium twice every three hours and incubated for 24 hours. Dental pulp cells were cultured in TPE solution at concentrations of MBC and 2-fold of MBC against S. mutans or L. casei respectively at 6, 12, 24 and 72 hours. Dental pulp cells cultured in Dulbecco’s Modified Eagle Medium with 10% fetal bovine serum were used as a positive control group and pulp cells cultured in 10% hydrogen peroxide were used as a negative control group. At each test period, dental pulp cells in each solution were rinsed with phosphate buffer saline (PBS) and added with Dulbecco’s Modified Eagle Medium with 10% fetal bovine serum. Cytotoxicity effects were evaluated using manual counting method with inverted microscope (Axiovert 25, Zeiss Frankfurt, Germany) at 100X by capturing the same areas in each well with NIS Elements BR 3.00 imaging software (Nikon Instruments). Dental pulp cells per area 1 cm² were counted twice.

Dental pulp cells cultured in TPE solution at concentrations of MBC and 2-fold of MBC against S. mutans or L. casei were counted twice.
Results

Extraction of Thai propolis

Raw Thai propolis (Figure 1) was sticky mass with dark brown color. The yield of this extract was 3.67% (w/w). TPE was also dark brown color with unique smell.

Determination of flavonoid and phenolic contents

TPE contained flavonoids 10% (w/w) which composed of flavones and flavonols 0.73% (w/w quercetin equivalent) and flavanones and flavanonols 9.27% (w/w naringenin equivalent). The extract had phenolic compounds 2.95% (w/w gallic acid equivalent) (Table 1).

<table>
<thead>
<tr>
<th>Flavonoids and phenolic compounds</th>
<th>Percentage (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavones and flavonols (quercetin equivalent)</td>
<td>0.73</td>
</tr>
<tr>
<td>Flavanones and flavanonols (naringenin equivalent)</td>
<td>9.27</td>
</tr>
<tr>
<td>Phenolic compounds (gallic acid equivalent)</td>
<td>2.95</td>
</tr>
</tbody>
</table>

Antimicrobial activity

The extract had antimicrobial activities. Average inhibition zone of TPE against Streptococcus mutans was 8.31±0.06 mm and against Lactobacillus casei was 3.55±0.09 mm. Minimum inhibitory concentration (MIC) against Streptococcus mutans was 22.5 mg/ml, against Lactobacillus casei was 11.25 mg/ml. Minimum bactericidal concentration (MBC) against both bacteria was 45 mg/ml (Table 2).

<table>
<thead>
<tr>
<th>Inhibition zone (mean ± S.D.) (mm)</th>
<th>MIC (mg/ml)</th>
<th>MBC (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE</td>
<td>2% Chlorhexidine digluconate</td>
<td>Absolute ethanol</td>
</tr>
<tr>
<td>S. mutans</td>
<td>8.31 ± 0.06</td>
<td>6.62 ± 0.08</td>
</tr>
<tr>
<td>L. casei</td>
<td>3.55 ± 0.09</td>
<td>16.91 ± 0.15</td>
</tr>
</tbody>
</table>

Cytotoxicity of TPE

Cytotoxicity of TPE was tested at MBC (45 mg/ml) and 2-fold of MBC (90 mg/ml) since this study plan to prepare Thai propolis preparation at concentration 2-fold of MBC. TPE both concentrations showed no cytotoxicity and stimulated human dental pulp cells in every test durations. At 6, 12, 24 and 72 hours, TPE concentration 45 mg/ml showed no cytotoxicity and could stimulate human dental pulp cells proliferation between 99.57-106.93 % whilst at concentration 90 mg/ml it could stimulate human dental pulp cells proliferation between 101.28-112.22 % (Figure 2).
Discussion and Conclusions

TPE percentage of yield in this study was less than Anatolian propolis, studied by Uzel and co-worker (2005), which were in the range of 20.51 – 44.80 % (w/v). Flavonoids and phenolic compounds of propolis extract had been determined by many different methods including high performance liquid chromatography (Kumazawa et al., 2004; Daugsch et al., 2008; Siripatrawan et al., 2013), gas chromatography–mass spectrometry (Uzel et al., 2005; Mohammadzadeh et al., 2007) and colorimetric method (Chang et al., 2002; Cvek et al., 2007; Siripatrawan et al., 2013). Colorimetric method is considered convenient, not required advanced instruments and low cost, therefore, they were used in this study to detect both flavonoids and phenolic compounds. Total flavonoids contents of TPE were 10% (w/w) which were higher than a study by Kumazawa et al., (2004). Total phenolic compounds were 2.95% (w/w) which were similar to a study by Kumazawa et al., (2004).

Ethanolic extraction at room temperature give higher flavonoids and phenolic compounds than that water extraction (Mello and Hubinger 2012; Kaewmuangmoon et al., 2012; Siripatrawan et al., 2013). This study used ethanolic extraction at room temperature for the best results.

TPE has antimicrobial activities. Siripatrawan et al., (2013) found that TPE kill Gram positive bacteria better than Gram negative bacteria. Our research studied 2 Gram positive bacteria mostly found in carious lesion. The MIC and MBC of TPE was higher than Iranian propolis extracts which were only 250 µg/ml (Kashi et al., 2011). The inhibition zone of TPE was wider than chlorhexidine digluconate for S. mutans but less than chlorhexidine digluconate for L. casei.

It is noticeable that there were different in percentage of yield, flavonoids and phenolic compounds, MIC and MBC of TPE compared with other propolis. These could be due to the different source of starting propolis materials, seasonal variation of harvest and extraction method (Kaewmuangmoon et al., 2012, Nunes et al., 2013; Siripatrawan et al., 2013).
Although MTT cytotoxicity assays was a common cell counting technique. Our previous study (Chaipanha et al., 2013) found that the yellowish color of TPE was similar to MTT reagents and had an impact on the determination of optical density by spectrophotometer. In this study, alamar blue cytotoxicity assay was used because of the blue color reagent gave different color of solution, no cytotoxicity and more sensitive than MTT cytotoxicity assays. Viable cells do not take trypan blue dye appear unstained while nonviable cells have no intact cell membrane appeared blue stained (Bio-Rad Laboratories 2011). This study, viable cells was counted manually using phase contrast microscope because it was simple, no need for special or complicated equipments. This study counted cells twice, statistical analysis showed that the count was consistency (Kendall rank-order correlation coefficient; \(\tau = 0.855, P < 0.001 \)), and triple checked with an expert.

TPE contained 10 % flavonoids and 2.95 % phenolic compounds and had antimicrobial activities against S. mutans and L. casei. TPE concentration 90 mg/ml had no cytotoxic effect and can stimulate human dental pulp cells in vitro. The results of this study suggest that TPE is suitable for development of dental pulp capping material because it had bactericidal effect against Streptococcus mutans and Lactobacillus casei which were bacteria in human dental palp and it had no cytotoxicity on human dental pulp cells.

References

Mello BCBS, Hubinger MD. Antioxidant activity and polyphenol contents in Brazilian green propolis extract prepared with the use of ethanol and water as solvents in different pH values. *Int J Food Sci Tech* 2012; 47(12):2510-2518.

Vitchayakitti W, Siripatrawan U, Sanguandeekul R, editors. Total phenolic content and antimicrobial property of propolis from Nan province. The 35th Congress on Science and Technology of Thailand (STT35); 2009. Burapha University, Thailand.