Correlation between Growth, Phenolic Content and Antioxidant Activity in the Edible Seaweed, Caulerpa lentillifera in Open Pond Culture System

Main Article Content

Bongkot Wichachucherd
Suchada Pannak
Chuenmanee Saengthong
Intira Koodkaew
Eknarin Rodcharoen

Abstract

In Thailand, Caulerpa lentillifera J. Agardh is cultured as a commercial endeavor due to its high rate of growth and its nutrient and antioxidant contents. Of particular interest is the correlation between growth rate in pond culture and the resulting chemical products, such as total phenolic, and antioxidant activity. Samples were randomly collected from ponds once a month from April to June 2017. Morphological features, including dry weight, moisture content and numbers of fronds and branches were measured. Ethanol extraction was used to determine the total phenolic content and antioxidant activity. The results showed that dry weight was highest in April, hence marked the peak of the growth period, and was correlated to the number of fronds and branches. The percentage yield of extracts (16-17%) was not different among months, while phenol content and antioxidant activity showed slight differences among months. The highest phenol content was found in June (73±2.08 mg gallic acid equivalent·g-1 DW), while highest antioxidant activity was found in May (29.51±0.78%). The chemical content varied depending on physical environmental factors other than growth. These findings help us to understand the optimal conditions for growth and harvest of seaweed for chemical production and its potential for a variety of applications.

Article Details

How to Cite
Wichachucherd, B., Pannak, S., Saengthong, C., Koodkaew, I., & Rodcharoen, E. (2019). Correlation between Growth, Phenolic Content and Antioxidant Activity in the Edible Seaweed, Caulerpa lentillifera in Open Pond Culture System. Journal of Fisheries and Environment, 43(2), 66–75. Retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/168332
Section
Articles

References

1. Angell, A.R., L. Mata, R.de Nys and N.A. Paul. 2016. The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five. Journal of Applied Phycology 28: 511-524.

2. Balboa, E.M., E. Conde, A. Moure, E. Falque and H. Dominguez. 2013. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chemistry 138: 1764-1785.

3. Baleta, F.N. and J.P. Nalleb. 2016. Species composition, abundance and diversity of seaweeds along the intertidal zone of Nangaramoan, San Vicente, Sta. Ana, Cagayan, Philippines. Aquaculture, Aquarium, Conservation &Legislation-International Journal of the Bioflux Society 9: 250-259.

4. Belton, G.S., W.F. Prud’homme van Reine, J.M. Huisman, S.G.A. Draisma and C.F.D. Gurgel. 2014. Resolving phenotypic plasticity and species designation in the morphologically challenging Caulerpa Racemosa-Peltata Complex (Caulerpaceae, Chlorophyta). Journal of Phycology 50: 32-54.

5. Brand-Williams, W., M.E. Cuvelier and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28: 25-30.

6. Chakraborty, K., A.P. Lipton, R. Paul Raj and K.K. Vijayan. 2010. Antibacterial labdane diterpenoids of Ulva fasciata Delile from southwestern coast of the Indian Peninsula. Food Chemistry 119: 1399-1408.

7. Cole, A.J., D.A. Roberts, A.L. Garside, R. De Nys and N.A. Paul. 2015. Seaweed compost for agricultural crop production. Journal of Applied Phycology 28: 629-642.

8. Collado-Vides, L. 2002. Morphological Plasticity of Caulerpa prolifera (Caulerpales, Chlorophyta) in relation to growth form in a coral reef lagoon. Botanica Marina 45: 123-129.

9. Collado-Vides, L. and D. Robledo. 1999. Morphology and photosynthesis of Caulerpa (Cholophyta) in relation to growth form. Journal of Phycology 35: 325-330.

10. De Oliveira, M. N., A.L.P. Freitas, A.F.U. Carvalho, T.M.T. Sampaio, D.E. Dárlio, I.A. Teixeira, S.T. Gouveia, J.G. Pereira and M.M.C. de Sena. 2009. Nutritive and non-nutritive attributes of washed-up seaweeds from the coast of Ceará, Brazil. Food Chemistry 115: 254-259.

11. De Souza, E.T., D.P. De Lira, A.C. De Queiroz, D.J. de Silva, A.B. de Aquino, E.A. Mella, V.P. Lorenzo, G.E. de Miranda, J.X. de Araújo-Júnior, M.C. Chaves, J.M. Barbosa-Filho, P.F. de Athade-Filho, B.V. Santos and M.S. Alexandre-Moreira. 2009. The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Marine Drugs 7: 689-704.

12. Garcia-Vaquero, M. and H. Hayes. 2016. Red and green macroalgae for fish and animal feed and human functional food development. Food Review International 32: 15-45.

13. Guo, H., J. Yao, Z. Sun and D. Duan. 2015. Effects of salinity and nutrients on the growth and chlorophyll fluorescence of Caulerpa lentillifera. Chinese Journal of Oceanology and Limnology 33: 410-418.

14. Guo, H., J. Yao, Z. Sun and D. Duan. 2014. Effect of temperature, irradiance on the growth of the green alga Caulerpa lentillifera (Bryopsidophyceae, Chlorophyta). Journal of Applied Phycology 27: 879-885.

15. Hong, D.D., H.M. Hien and P.N. Son. 2007. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. Journal of Applied Phycology 19: 817-826.

16. Knoshaug, E.P., B. Shi, T.G. Shannon, M.M. Mleziva and P.T. Pienkos. 2013. The potential of photosynthetic aquatic species as sources of useful cellulose fibers-a review. Journal of Applied Phycology 25: 1123-1134.

17. Kumari, P., M. Kumar, V. Gupta, C.R.K. Reddy and B. Jha. 2010. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chemistry 120: 749-757.

18. Lin, H.C., S.T. Chou, M.Y. Chuang, T.Y. Liao, W.S. Tsai and T.H. Chiu. 2012. The effects of Caulerpa microphysa enzyme-digested extracts on ACE-inhibitory activity and in vitro anti-tumour properties. Food Chemistry 134: 2235-2241.

19. Liu, H., F. Wang, Q. Wang, S. Dong and X. Tian. 2016. A comparative study of the nutrient uptake and growth capacities of seaweeds Caulerpa lentillifera and Gracilaria lichenoides. Journal of Applied Phycology 28: 3083-3089.

20. Machado, L.P., L.R. Carvalho, M.C.M Young, E.M. Cardoso-Lopes, D.C. Centeno, L. Zambotti-Villela, P. Colepicolo and N.S. Yokoya. 2015. Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts. Revista Brasileira de Farmacognosia 25: 657-662.

21. Matanjun, P., S. Mohamed, N.M. Mustapha and K. Muhammad. 2008. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. Journal of Applied Phycology 21: 75-80.

22. Mohsin, S., G.M. Kurup, and R. Mahadevan. 2013. Effect of ascophyllan from brown algae Padina tetrastromatica on inflammation and oxidative stress in carrageenan-induced rats. Inflammation 36: 1268-1278.

23. Nagappan, T. and C.S. Vairappan. 2014. Nutritional and bioactive properties of three edible species of green algae, genus Caulerpa (Caulerpaceae). Journal of Applied Phycology 26: 1019-1027.

24. Pangestuti, R. and S.K. Kim. 2015. Seaweed proteins, peptides, and amino acids. In: Seaweed sustainability: food and non-food applications (es. B. Tiwari and D. Troy), pp. 125-140. Elsevier, Amsterdam.

25. Pedersen, M.F. and K.L. Johnsen. 2017. Nutrient (N and P) dynamics of the invasive macroalga Gracilaria vermiculophylla: nutrient uptake kinetics and nutrient release through decomposition. Marine Biology 164(8): 172.

26. Pugdeepun, N. 2001. Growth and nutritive values of the sea grape, Caulerpa lentillifera J. Agardh. Master of Science (Fisheries Science) thesis, Kasetsart University, Bangkok. 110 pp.

27. Rabia, M.D.S. 2016. Cultivation of Caulerpa lentillifera using tray and sowing methods in brackishwater pond. Environmental Sciences 4: 23-29.

28. Santos, A.K.F. dS., D.V. da Fonseca, P.R.R. Salgado, V.M. Muniz, P. de Arruda Torres, N.S. Lira, C. da Silva Dias, L.C. de Morais Pordeus, J.B. Barbosa-Filho and R.N. de Almeida. 2015. Antinociceptive activity of Sargassum polyceratium and the isolation of its chemical components. Revista Brasileira de Farmacognosia 25: 683-689.

29. Sawadogo, W.R., A. Meda, C.E. Lamien and M. Kiendrebeogo. I.P. Guissou and G. Odile. 2006. Phenolic content and antioxidant activity of six Acanthaceae from Burkina Faso. Journal of Biological Sciences 6: 249-252.

30. Sharma, H.S.S., C. Fleming, C. Selby, J.R. Rao and T. Martin. 2013. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology 26: 465-490.

31. Singleton, V.L., R. Orthofer and R.M. Lamuela-Raventós. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocaltey reagent. Methods in Enzymology 299: 152-178.

32. Yangthong, M., N. Hutadilok-Towatana and W. Phromkunthong. 2009. Antioxidant activities of four edible seaweeds from the southern coast of Thailand. Plant Foods for Human Nutrition 64: 218-223.

33. Yangthong, M. and N. Towatana. 2014. Total phenolic contents, DPPH radical-scavenging
activities of six seaweeds from the southern coast of Thailand. Journal of Fisheries Technology Research 8: 96-104.