Effects of Hydrochloric Acid Pretreatment on Ethanol Yield of the Agarophyte, Gracilaria tenuistipitata

Main Article Content

Nattawarit Nunraksa
Jantana Praiboon
Pongsatorn Puangsombat
Anong Chirapart

Abstract

Seaweed is a promising resource for bioethanol production because of its high carbohydrate content. This study utilized the red seaweed, Gracilaria  tenuistipitata, as feed stock for the production of ethanol due to its high biomass in cultivation. This work aimed to improve ethanol production from algal species using different concentrations of hydrochloric acid during pretreatment. Samples of Gracilaria species were gathered from earthen ponds. The algal samples were pretreated with 0.5, 1.0, and 2 M HCl at 95°C for 15h. The yeast strain Saccharomyces cerevisiae TISTR No.5339 was used as the ethanol producer. Yield of ethanol was analyzed by gas chromatography. The highest yeast cell mass of2.42x108 cells m.L-1 was obtained from fermentation of 1M HCl hydrolysate. Under the fermentation condition,  pretreatment of the alga with 1M HCl gave a higher yield of ethanol (0.32 g ethanol g-1 sugarsl than those with 0.5M HCl (0.29 g ethanol g-1 sugars) and 2M HCl (0.22 g ethanol g-1 sugars). Our study suggested that the acid pretreatment improved ethanol yield during algal fermentation.

Article Details

How to Cite
Nunraksa, N., Praiboon, J., Puangsombat, P., & Chirapart, A. (2015). Effects of Hydrochloric Acid Pretreatment on Ethanol Yield of the Agarophyte, Gracilaria tenuistipitata. Journal of Fisheries and Environment, 39(1), 38–47. Retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/80551
Section
Articles

References

1. Anonymous. 2012. Thailand Energy Statistics 2012. Alternative Energy and Efficiency Information Center, Department of Alternative Energy Development and Efficiency, Ministry of Energy, Bangkok, 51 pp

2. Candra, K.P., Sarwono and Sarinah. 2011. Study on bioethanol production using red seaweed Eucheuma cottonii from Bontang sea water. Journal of Coastal Development 15: 45–50.

3. Chandel, AK, E.S. Chan, R. Ravinder, M.L. Narasu, V.L. Rao and P. Ravindra. 2007. Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnology and Molecular Biology Review 2(1):14–32.

4. Chirapart, A., J. Praiboon, P. Puangsombat, C. Pattanapon and N. Nunraksa. 2014. Chemical composition and ethanol production potential of Thai seaweed species. Journal of Applied Phycology 26:979–986.

5. Cho, Y., H. Kim and S.-K. Kim. 2013. Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess and Biosystems Engineering 36:713–719.

6. Cho, H., C.-H. Ra and S.-K. Kim. 2014. Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts. Journal of Microbiology and Biotechnology 24(2): 264–269.

7. Feng, D., H. Liu, F. Li, P. Jiang and S. Qin. 2011. Optimization of dilute acid hydrolysis of Enteromorpha. Chinese Journal of Oceanology and Limnology 29(6):1243-1248.

8. Horn, S.J., I.M. Aasen and K. Østgaard. 2000. Ethanol production from seaweed extract. Journal of Industrial Microbiology and Biotechnology 25:249–254.

9. Jang, J.-S., Y. Cho, G.-T. Jeong and S.-K. Kim. 2012. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess and Biosystems Engineering 35:11–18.

10. Khambhaty, Y., K. Mody, M.R. Gandhi, S. Thampy, P. Maiti, H. Brahmbhatt, K. Eswaran and P.K. Ghosh. 2012. Kappaphycus alvarezii as a source of bioethanol. Bioresource Technology 103: 180–185.

11. Kim, N-J., H. Li, K. Jung, H. N. Chang, and P. C. Lee. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresource Technology 102: 7466–7469.

12. Kumar, S., R. Gupta, G. Kumar, D. Sahoo and R.C. Kuhad. 2013. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresource Technology 135: 150–156.

13. Lahaye, M., C. Rochas and W. Yaphe. 1986. A new procedure for determining the heterogeneity of agar polymers in the cell walls of Gracilaria spp. (Gracilariaceae, Rhodophyta). Canadian Journal of Botany 64: 579 – 585.

14. Meinita, D.N.M., G.T. Jeong and Y.K. Hong. 2011. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess and Biosystems Engineering 35:123–128.

15. Meinita, D.N.M., J.Y. Kang, G.T. Jeong, H.M. Koo, S.M. Park and Y.K. Hong. 2012. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). Journal of Applied Phycology 24:857–862.

16. Meinita, D.N. M., B. Marhaeni, T. Winanto, G.-T. Jeong, M.N.A. Khan and Y.-K. Hong. 2013. Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. Journal of Applied Phycology 25: 1957–1961.

17. Montaño, N.E., R.D. Villanueva and J.B. Romero. 1999. Chemical characteristics and gelling properties of agar from two Philippine Gracilaria spp. (Gracilariales, Rhodophyta). Journal of Applied Phycology 11: 27–34.

18. Mutripah, S., M.D.N. Meinita, J.-Y. Kang, G.-T. Jeong, A.B. Susanto, R. E. Prabowo and Y.-K. Hong. 2014. Bioethanol production from the hydrolysate of Palmaria palmata using sulfuric acid and fermentation with brewer’s yeast. Journal of Applied Phycology 26:687–693.

19. Pan-Utai, W. 2010. Ethanol production from lignocellulosic biomass by a simultaneous saccharification and fermentation process. Thesis, Kasetsart University, Bangkok, Thailand.

20. Ruangchuay, R., C. Lueangthuvapranit and M. Nuchaikaew. 2010. Cultivation of Gracilaria fisheri (Xia & Abbott) Abbott, Zhang & Xia (Gracilariales, Rhodophyta) in abandoned shrimp ponds along the coast of Pattani Bay, southern Thailand. Algal Resources 3:185–192.

21. Setyaningsih, D., S. Windarwati, I. Khayati, N. Muna and P. Hernowo. 2012. Acid hydrolysis technique and yeast adaptation to increase red macroalgae bioethanol production. International Journal of Environment and Bioenergy 3(2): 98–110

22. Souza, B.W.S., M.A. Cerqueira, A.I. Bourbon, A.C. Pinheiro, J.T. Martins, J.A. Teixeira, M.A. Coimbra and A.A. Vicente. 2012. Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids 27: 287–292.

23. Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83: 1–11

24. Taherzadeh, M.J. and K. Karimi. 2007. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2:472–499

25. Trivedi, N., V. Gupta, C.R.K. Reddy and B. Jha. 2013. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresource Technology 150: 106–112.

26. Usov, A. I. 1998. Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids 12(3): 301–308.

27. Usov, A.I. 2011. Chapter 4 – Polysaccharides of the red algae. Advances in Carbohydrate Chemistry and Biochemistry 65: 115–217.

28. van Zyl, W.H., L.R. Lynd, R. den Haan and J.E. McBride. 2007. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Advances in Biochemical and Engineering/Biotechnology 108: 205–235.

29. Wu, F.-C., J.-Y. Wu, Y.-J. Liao, M.-Y. Wang, I.-L. Shih. 2014. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresource Technology 156: 123–131.

30. Yanagisawa, M., K. Nakamura, O. Ariga and K. Nakasaki. 2011. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochemistry 46: 2111–2116.