Production of Protein Hydrolysate from Yellowfin (Thunnus albacares) and Skipjack Tuna (Katsuwonous pelamis) Viscera

Main Article Content

Nichaphat Detkamhaeng
Wanchai Worawattanamateekul
Jirapa Hinsui

Abstract


Tuna viscera consist of high levels of protein and enzymes which have the potential to be used for protein hydrolysate production. The objective of this study was to produce protein hydrolysates from yellowfin and skipjack tuna viscera. Tuna viscera were autolyzed at various temperatures (33, 35, 55°C) for 10 days. Protein hydrolysate produced from tuna viscera contained 15.09-22.65% protein, 0.48-0.59% fat, and 1.88-1.95% salt. The levels of TVB-N (9.52-45.39 mg·100 g-1 and histamine (276.87-289.95 mg·kg-1 were below the maximum levels for human consumption. Protein hydrolysate from skipjack tuna viscera contained a greater amount of protein and a lower level of fat than yellowfin tuna viscera. Protein hydrolysate from yellowfin and skipjack tuna viscera showed antioxidant activity as determined by DPPH (2,2-diphenyl-l-picrylhydrazyl) and ABTS (2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid)) radical scavenging activities with acceptable qualities. The protein hydrolysate from skipjack tuna viscera could be a new source of protein for humans.


Article Details

How to Cite
Detkamhaeng, N., Worawattanamateekul, W., & Hinsui, J. (2016). Production of Protein Hydrolysate from Yellowfin (Thunnus albacares) and Skipjack Tuna (Katsuwonous pelamis) Viscera. Journal of Fisheries and Environment, 40(2), 51–67. Retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/80922
Section
Articles

References

1. AOAC. 2006. Official Methods of Analysis 17th Ed. The Association of Official Analysis Chemists Inc., Gaithersburg, USA.

2. AOAC., 2012. Official Methods of Analysis 19th ed. The Association of Official Analysis Chemists Inc., Gaithersburg, USA.

3. Bhaskar, N. and N.S. Mahendrakar. 2008. Protein hydrolysate from visceral waste proteins of Catla (Catla catla): Optimization of hydrolysis conditions for a commercial neutral protease. Bioresource Technol. 99 (10): 4105-4111.

4. Binsan, W., S. Benjakul, W. Visessanguan, S. Roytrakul, M. Tanaka and H. Kishimura. 2008. Antioxidative activity of Mungoong, an extract paste, from the cephalothorax of white shrimp (Litopenaeus vannamei). Food Chem. 106: 185-193.

5. Bo, L., C. Feng, W. Xi, J. Baoping and W. Yannie. 2007. Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chomatography and electrospray ionization-mass spectrometry. J. Food Chem. 102: 1135-1143.

6. Brillantes, S., S. Paknoi and A. Totakien. 2002. Histamine formation in fish sauce production. J. Food Chem. Toxicology 67 (6):2090-2094.

7. Brown, J.E. 2008. Nutrition Now. Thomson Wadsworth, USA.

8. Byun, M.W., K.H. Lee, D.H. Kim, J.H. Kim, H.S. Yook and H.J. Ahn. 2000. Effects of gamma radiation on sensory qualities, microbiological and chemical properties of salted and fermented squid. J. Food Protection 63: 934-939.

9. Chalamaiah, M., B. Dinesh kumar, R. Hemalatha and T. Jyothirmayi. 2012. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem. 135: 3020-3028.

10. Chi, C.F., F.Y. Hu, B. Wang, Z.R. Li and H.Y. Luo. 2015. Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis ) dark muscle. Marine Drugs 13: 2580-2601.

11. Chotikachinda, R., C. Tantikitti, S. Benjakul, T. Rustad and E. Kumarnsit. 2013. Production of protein hydrolysates from skipjack tuna (Katsuwonus pelamis) viscera as feeding attractants for Asian seabass (Lates calcarifer). Aquacalture Nutri. 19: 773-784.

12. Codex Alimentarius Commission. 2011. Codex Standard for Fish Sauce (Codex Stan 302-2011). Codex Alimentarius Commission: Food and Agriculture Organization. Vialedelle Terme di Caracalla, Rome, Italy.

13. Femaroli, G. 1975. Femaroli's handbook of flavor ingredients, 4th ed. CRC press, Inc., Florida, USA.

14. Fish Inspection and Quality Control Division Department of Fisheries. 2013. Traditional Productions for all Counties. Fish Inspection and Quality Control Division Department of Fisheries, Bangkok, Thailand.

15. Funatsu, Y., K. Kawasaki and S. Konagaya. 2004. Extractive Component of Fish Sauces from Waste of the Frigate Mackerel Surimi Processing and a Comparison with Those of Several Asian Fish Sauces. J. Elsevier: 193- 201.

16. Hasegawa, H. 1987. Laboratory manual on analytical methods and procedures for fish and fish products. Marine Fisheries Research Department, SEAFDEC, Singapore.

17. Hernández-Herrero, M., A.X. Roig-Sagués, E.I. López-Sabater, J.J. Rodríguez­ Jerez and M.T. Mora-Ventura. 1999. Total Volatile Basic Nitrogen and other Physicochemical and Microbiological Characteristics as Related to Ripening of Salted Anchovies. J. Food Sci. 64(2): 334-347.

18. Herpandi, N., R.A. Huda and W.A. Wan Nadiah. 2011. The Tuna Fishing Industry: A New Outlook on Fish Protein Hydrolysates. Comprehensive Rev. Food Sci. Food Safety 10: 195-207.

19. Hsu, K. 2010. Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by­ product. Food Chem. 122: 42-48.

20. Iverson, S.J., L. Shelley, C. Lang and M.H. Cooper. 2001. Comparison of the Bligh and Dyer and Folch Methods for Total Lipid Determination in a Broad Range of Marine Tissue. Lipid 36 (11): 1283-1287.

21. Jiang, J.J., Q.X. Zeng, Z.W. Zhu and L.Y. Zhang. 2007. Chemical and sensory changes associated Yu-lu fermentation process- A traditional Chinese fish sauce. Food Chem. 104: 1629-1634.

22. Kilinc, B., S. Cakli, S. Tolasa and T.Dincer. 2005. Chemical Microbiological and Sensory Changes Associated with Fish Sauce Processing. J. Springer­ Verlag.:1-10.

23. Kim, S.K. 2014. Seafood Processing By­ Products: Trends and Applications. Springer Science and Business Media, New York, USA.

24. Klomklao, S., S. Benjakul and W. Visessanguan. 2004. Comparative studies on proteolytic activity of spleen extracts from three tuna species commonly used in Thailand. Songklanakarin J. Food Biochem. 28: 355-372.

25. Klompong, V., S. Benjakul, D. Kantachote and F. Shahidi. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102 (4): 1317-1327.

26. Kristinsson, H.G., Rasco, B.A., 2000. Fish protein hydrolysates: production, biochemical, and functional properties. Rev. Food Sci. Nutri. 40(1): 43-81.

27. Lopetcharat, K. and J.W. Park. 2002. Characterization of fish sauce made from Pacific whiting and surimi by­ products during fermentation stage. J. Food Sci. 67(2): 511-516.

28. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Bio. chem. 193: 265-275.

29. Lalasidis, G., S. Bostrom and L. Sjoberg. 1978. Low molecular weight enzymatic fish protein hydrolysates: chemical composition and nutritional value. J. Agri. Food Chem. 26: 751-756.

30. Miyagi, A., T. Suzuki. H. Nabetani and M. Nakajima. 2013. Color control of Japanese soy sauce (shoyu) using membrane technology. Food Bioprod. Process. 91 (4): 507-514.

31. Miwa, K. and L.S. Ji. 1992. Laboratory manual on analytical methods and procedures for fish and fish products, 2nd ed. Marine Fisheries Research Department Southeast Asian Fisheries Development Center Singapore and Japan International Cooperation Agency, Singapore.

32. Nielsen, S.S. 2010. Food Analysis Laboratory: Food Science Text Serie, 2nd ed. Springer, London.

33. Ovissipourl, M., S. Benjakul, R. Safari and A. Motamedzadegan. 2010. Fish protein hydrolysates production from yellowfin tuna Thunnus albacares head using Alcalase and Protamex. Int. Aquat. Res.2: 87-95.

34. Ovissipour, M., B. Rasco, S.G. Shiroodi, M. Modanlow, S. Gholami and M. Nemati. 2013. Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. J. Sci. Food Agric. 93(7): 1718-1726.

35. Pastoriza, L., G. Sampedro, M.L. Cabo, J.J.R. Herrera and M. Bernardez. 2004. Solubilisation of proteins from rayfish residues by endogenous and commercial enzymes. J. Sci. Food Agri. 84: 83-88

36. Peterson, G.L. 1977. A simplification of protein assay method of Lowry, Rosebrough, Farr and Randall. Analytical Biochem. 83: 346-356.

37. Pownall, T.L., C.C. Udenigwe and R.E. Aluko. Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. J.Agri.Food Chem. 58: 4712-4718.

38. Prasertsan, P. and T. Prachumratana. 2008. Properties of protease and lipase from whole and individual organ of viscera from three tuna specie. Songklanakarin J. Sci. Technol. 30: 70-86.

39. Rebeca, B.D., M.T.Pena-vara and M. Diaz­ castaneda. 1991. Production of fish protein hydrolysate with bacterial protease: yield and nutrition value. J. Food Sci. 56: 309- 314.

40. Ruchikachorn, N., P. Chompreeda, V. Haruthaitanasan and S. Chuenput. 2005. Formulation and process optimization of peanut sauce. Master thesis, Kasetsart University.

41. Rutherfurd, S.M. 2010. Methodology for determining degree of hydrolysis of proteins in Hydrolysates: a review. J. AOAC Int. 93 (5): 1515-1522.
42. Salwanee, S., W.M. Wanaida, S. Mamot, M.Y. Maskat and S. lbrahim. 2013. Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus affinis) by using alcalase. J. Sains Malaysiana 42: 279-287.

43. See, S.F., L.L. Hoo and A.S. Babji. 2011. Optimization of enzymatic hydrolysis of Salmon ( Salmo salar) skin by Alcalase. Int. Food Res. J. 18(4): 1359-1365.

44. Simpson, B.K. 2000. Digestive proteinases from marine animals, pp 531--40. In N.F. Haard, B.K. Simpson, eds. Seafood enzymes: utilization and influence on postharvest seafood quality. Mercel Dekker, New York, USA.

45. Somboonyarithi, V., P. Suwansakornkul, O. Kongpan, J. Pattaravivat and J. Rungthong. 2000. The characteristics and quality of Thai fish sauce. Fishery Technological Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand.

46. Sumontha, W. 2002. Food microbiology. Thammasat University publishing, Bangkok, Thailand.

47. Thai Industrial Standard. 1983. Standard for Local Fish Sauce. Thai Industry Standard and Institute, Ministry of Industry, Bangkok, Thailand.

48. Weiss, R.L. 1973. Survival of bacteria at low pH and high temperature. Limnology Oceanography 18 (6): 877-883.

49. Xu, W., G. Yu, C. Xue, Y. Xue and Y. Ren. 2008. Biochemical changes associated with fast fermentation of squid processing by-products for low salt fish sauce. J. Food Chem. 107: 1597-1604.

50. You, S.J., C.C. Udenigwe, R.E. Aluko and J. Wua. 2010. Multifunctional peptides from egg white lysozyme. Food Res. Int. 43: 848-855.

51. Yu, X., X. Mao, S. He, P. Liu, Y. Wang and C. Xue. 2014. Biochemical properties of fish sauce prepared using low salt, solid state fermentation with anchovy by-products. Food Sci. Biotechnol. 23(5), 1497-1506.