The Attractive Points and Strong Convergence Theorems for Generalized Hybrid Mappings (\alpha,\beta) in CAT(K) Spaces

Main Article Content

Bancha Nanjaras

Abstract

This research paper proves the strong convergence theorems of the Ishikawa iterative process to the set of attractive points for generalized hybrid mappings (\alpha,\beta) in CAT(\kappa) spaces with \kappa>0

Keywords

Downloads

Download data is not yet available.

Article Details

Section
บทความวิจัย
Author Biography

Bancha Nanjaras, Rajabhat Mahasarakham University

Department of Mathematics, Faculty of Science and Technology

Rajabhat Mahasarakham University

References

[1] M. Bridson and A. Haeiger, Metric Spaces of Non-Positive Curvature, Springer-
Verlag, Berlin, Heidelberg, New York, (1999).
[2] F. Bruhat and J. Tits, Groupes reductifs sur un corps local, I. Donnees radicielles
valuees. Publ. Math. IHES 41 (1972).
[3] S. Dhompongsa and B. Panyanak, On -convergence theorems in CAT(0) spaces,
Comput. Math. Appl. 56 (2008) 2572-2579.
[4] P. Kocourek, W. Takahashi, J. C. Yao, Fixed point theorems and weak convergence
theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math.,
14 (2010), 2497-2511.
[5] F. Kohsaka, W. Takahashi, Fixed point theorems for a class of nonlinear mappings
related to maximal monotone operators in Banach spaces, Arch. Math. (Basel),
91 (2008), 166-177.
[6] S. Ohta, Convexities of metric spaces, Geom. Dedic. 125 (2007) 225-250
[7] B. Panyanak, On an open problem of Kyung Soo Kim, Fixed Point Theory and
Appl. (2015).
[8] W. V. Petryshyn, Construction of fixed points of demicompact mappings in Hilbert space, J. Math. Anal. Appl., 14(1966), 276-284.
[9] H. F. Senter, W. G. Doston, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375-380.
[10] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert
space. J. Nonlinear Convex Anal. 11, (2010) 79-88.
[11] Y. Zheng, Attractive points and convergence theorems of generalized hybrid mapping ,J. Nonlinear Sci. Appl. 8 (2015), 354-362.