Numerical simulation on hydrodynamic performance of parallel twin vertical axis tidal current turbines

Authors

  • Ke Sun College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
  • Zhou Xuehan College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
  • Li Yan College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
  • Zhang Liang College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

DOI:

https://doi.org/10.33175/mtr.2019.176062

Keywords:

Tidal current energy, Vertical-axis hydro-turbine, Hydrodynamic performance, Parallel twin turbines, Wake flow

Abstract

Single and parallel twin vertical axis hydro turbines were numerically simulated by using OpenFOAM software, studying the interference effects, such as torque and load of turbine, as well as hydrodynamic performance influenced by the distance and rotation forms between twin turbines, and analyzing the wake flow field to show the velocity profile distribution. The results showed that the average power of parallel twin turbines is always higher than the power of a single turbine, and the closer the lateral distance between turbines, the higher the power. When lateral distance approximates to 1.25 times turbine diameter, and turbines rotate in the opposite inward direction, the average energy efficiency value of parallel twin turbines is about 25 % higher than that of a single one. Additionally, opposite inward rotation is the best arrangement form for twin turbines to obtain more power and counteract lateral force.

References

Bachant, P., & Wosnik, M. (2013). Performance and near-wake measurements for a vertical axis turbine at moderate reynolds number. In Proceedings of the ASME 2013 Fluids Engineering Summer Meeting, pp. 1-9. doi:10.1115/FEDSM2013-16575

Dyachuk, E., Goude, A., Lalander, E., & Bernhoff, H. (2012). Influence of incoming flow direction on spacing between vertical axis marine current turbines placed in a row. American Society of Mechanical Engineers 7, 285-292. doi:10.1115/OMAE2012-83347

Gebreslassie, M. G., Tabor, G. R., & Belmont, M. R. (2012). CFD Simulations for sensitivity analysis of different parameters to the wake characteristics of tidal turbine. Open Journal of Fluid Dynamics 2(3), 56-64. doi:10.4236/ojfd.2012.23006

Goude, A., & Agren, O. (2010). Numerical simulation of a farm of vertical axis marine current turbines. In Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, pp. 335-344. doi:10.1115/OMAE2010-20160

Guo, F. S. (2013). Performance analysis of vertical-axis tidal current turbines and optimizing turbines array. M. Chinese. Thesis, Dalian University of Technology, Dalian, China.

Jun, D. Shan, Z. D., & Wang X. F. (2010). Research status of tidal current turbine. Renewable Energy Resources 28(4), 130-133.

Kai, W., & Ke, S. (2016). Impact of phase angle on the hydrodynamic performance of a bi-unit vertical axis tidal current energy water turbine. Journal of Harbin Engineering University 37(1), 104-109.

Ke, S., Yan, L., Kai, W., & Liang, Z. (2017). CFD simulation analysis on the wake effect of tandem vertical axis tidal turbines. Journal of Harbin Institute of Technology 50(5), 185-191. doi:10.11918/j.issn.0367-6234.201606097

Lee, J. K., & Hyun, B. S. (2016). Study on performance variation according to the arrangements of adjacent vertical-axis turbines for tidal current energy conversion. Journal of Korean Marine Environment and Energy Institution 19(2), 151-158. doi:10.7846/JKOSMEE.2016.19.2.151

Liang, Z., Li, X. Z., & Jing, G. (2013). Tidal current energy update 2013. Advances in New and Renewable Energy 1(1), 62-63.

Patel, V., Eldho, T. I., & Prabhu, S. V. (2017). Experimental investigations on Darrieus straight blade turbine for tidal current application and parametric optimization for hydro farm arrangement. International Journal of Marine Energy 17, 110-135. doi:10.1016/j.ijome.2017.01.007

Ye, L., & Calisal, S. M. (2010a). Modeling of twin-turbine systems with vertical axis tidal current turbines: Part I-Power output. Ocean Engineering 37(7), 627-637. doi:10.1016/j.oceaneng.2010.01.006

Ye, L., & Calisal, S. M. (2010b). Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Renewable Energy 35(10), 2325-2334. doi:10.1016/j.renene.2010.03.002

Ye, L., & Calisal, S. M. (2011). Modeling of twin-turbine systems with vertical axis tidal current turbine: Part II-torque fluctuation. Ocean Engineering 38(4), 550-558. doi:10.1016/j.oceaneng.2010.11.025

Yong, M., Chao, H., Li, Y., Li, L, Deng, R, & Jiang, D. (2018). Hydrodynamic performance analysis of the vertical axis twin-rotor tidal current turbine. Water 10(11), 1694. doi:10.3390/w10111694

Downloads

Published

2019-05-04

How to Cite

Sun, K., Xuehan, Z., Yan, L., & Liang, Z. (2019). Numerical simulation on hydrodynamic performance of parallel twin vertical axis tidal current turbines. Maritime Technology and Research, 1(2), 59–79. https://doi.org/10.33175/mtr.2019.176062