Silicon composite ink for advanced photovoltaic generation prepared by low-cost technique

Main Article Content

Supanut Laohawiroj Apirak Mangkornkaew Atthaphon Maneedaeng Thipwan Fangsuwannarak

Abstract

This work describes the preparation process of crystalline silicon composite ink (Si ink) from waste silicon wafers as raw material through a grinding technique. Crystalline Si powders were homogeneously distributed in sol-gel solution via an ultrasonic shaker. The thin films of silicon dots bound with phosphorus silicate glass were produced from Si ink under drying at low-temperature by a low-cost technique as a screen printing. Micro-crystalline (mc) Si particle sizes and surface morphology of Si dots film were imaged by laser size analyzer and scanning electron microscopy, respectively. In this paper, these mc-Si dots films coating on quartz substrates were characterized by X-ray diffractometer and micro Raman spectroscopy techniques which are non-destructive optical tools to study micro- and nano-structural properties. XRD analysis revealed that ~80nm crystalline Si size in the films with relative intensity at (111) plane of 60-64% simultaneously exists into the films during the preparation at 100-400°C sintering condition.  Meanwhile, the obtained Raman spectroscopy results suggest that residue stress mainly effects to the Raman asymmetric peak strongly down shifted rather than dominated by (< 10 nm) small size effect.

Keywords

Downloads

Download data is not yet available.

Article Details

How to Cite
Laohawiroj, S., Mangkornkaew, A., Maneedaeng, A., & Fangsuwannarak, T. (2018). Silicon composite ink for advanced photovoltaic generation prepared by low-cost technique. Journal of Renewable Energy and Smart Grid Technology, 13(2). Retrieved from https://www.tci-thaijo.org/index.php/RAST/article/view/92261
Section
Articles
Author Biographies

Supanut Laohawiroj, Institute of Engineering, Suranaree University of Technology

School of  Electrical Engineering

Apirak Mangkornkaew, Institute of Engineering, Suranaree University of Technology

School of  Electrical Engineering

Atthaphon Maneedaeng, Institute of Engineering, Suranaree University of Technology

School of  Chemical Engineering

Thipwan Fangsuwannarak, Institute of Engineering, Suranaree University of Technology

School of  Electrical Engineering

References

[1] Green M.A.. (2003). Third generation photovoltaics: Advanced solar electricity generation. Springer Verlag, Berlin.

[2] Conibeer G., Green M.A., Cho E.C, König D., Cho Y.H., Fangsuwannarak T., Scardera G., Pink E., Huang Y., Puzzer T., Huang S., Song D., Flynn C., Park S., Hao X, Mansfield D.. (2008). Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films, 516., 20 6748–6756.

[3] Kintz H., Paquez X., Sublemontier O., Leconte Y., BoimeN., Reynaud C. (2015). Synthesis and layering of Si quantum dots/SiO2 composite films for third generation solar cells. Thin Solid Film, 593., 96-101.

[4] Sahu B.B, Yin Y., Lee J.S., Han J.G, Shiratani M. (2016). Plasma diagnostic approach for the low-temperature deposition of silicon quantum dots using dual frequency PECVD. J. Phys. D: Appl. Phys. , 49., 395203-395217.

[5] Antoniadis, H. (2009). Silicon ink high efficiency solar cells. 34th IEEE Photovoltaic Specialists Conference (PVSC), 650-654.

[6] J. Ouyang, Schuurmans C., Zhang Y., Nagelkerke R., Wu X., Kingston D., Wang Z.Y., Wilkinson D., Li C., Leek D.M., Tao Y., and Yu K. (2011). Low-Temperature Approach to High-Yield and Reproducible Syntheses of High-Quality Small-Sized PbSe Colloidal Nanocrystals for Photovoltaic Applications. Appl. Mater. Interfaces, 3., 553–565.

[7] Liu T.Y, Li M., Ouyang J., Zaman B., Wang R., Wu X., Yeh C.H., Lin Q., Yang B., and Yu K. (2009). Non-Injection and Low-Temperature Approach to Colloidal Photoluminescent PbS Nanocrystals with Narrow Bandwidth. J. Phys. Chem., 113., 2301–2308.

[8] Wolkin, M., Jorne, J., Fauchet, P., Allan, G. & Delerue, C. (1999). Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett, 82., 197–200.

[9] Lin C.Y., Fang Y.K., Chen S.F., Chang S.H., Chou T.H.(2006). Enhancing photoluminescence of nanocrystalline silicon thin film with oxygen plasma oxidation. Mater. Sci. Eng, 134., 99.

[10] Morales M., Leconte Y., Rizk R., Chateigner D.(2004). Anisotropic crystallite size analysis of textured nanocrystalline silicon thin films probed by X-ray diffraction. Thin Solid films, 450., 216.

[11] Marinins A., Yang Z., Chen H., Linnros J., Veinot Jonathan G. C., Popov S., and Sychugov I. (2016). Photostable Polymer/Si Nanocrystal Bulk Hybrids with Tunable Photoluminescence. ACS Photonics, 3., 1575-1580.

[12] Xiaodong P., Qing L., Dongsheng L. and Deren Y.(2011). Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Solar Energy Materials & Solar Cells, 95., 2941–2945.

[13] Kintz H., Paquez X., Sublemontier O., Leconte Y., Nathalie H-B. and Reynaud C. (2015). Synthesis and layering of Si quantum dots/SiO2 composite films for third generation solar cells. Thin Solid Films, 593., 96–101.

[14] Camden R. Hubbard. (1982). Standard reference material 640a silicon powder 2θ/d-Spacing Standard for X-ray Diffraction. USA: Washington, D.C., 20234.

[15] Comedi D., Zalloum O.H.Y,Irving E.A, Wojcik J., Roschuk T. Flynn M.J, and Mascher P. (2006). X-ray-diffraction study of crystalline Si nanocluster formation in annealed silicon-rich silicon oxides. Journal of Applied Physics, 99., 235181-235188

[16] Campbell I.H., and Fauchet P.M.(1986). The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Communications, 58., 739.

[17] Jian Zi, H. Büscher, C. Falter, W. Ludwig, Kaiming Zhange and Xide Xie. (1996). Raman shifts in Si nanocrystals. Appl. Phys. Lett., 69., 200

[18] Richter H., Wang Z. P., and Ley L. (1981). The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications, 39., 625-629.

[19] Mishra P. and Jain K. P. (2001). First- and second-order Raman scattering in nanocrystalline silicon. Phys, Rev, 64., 073304.

[20] Paillard V., Puech P., Laguna M.A., Temple-Boyer P., Caussat B., Coudere J.P., and de Mauduit B.(1998). Resonant Raman scattering in polycrystalline silicon thin films. Appl. Phys. Lett., 73., 1718.

[21] Arguirov T., Mchedlidze T., Kittler M., Rölver R., Berghoff B., Först M., and Spangenberg B.(2006). Residual stress in Si nanocrystals embedded in a SiO2SiO2 matrix. Appl. Phys. Lett. , 89., 053111.

[22] Zixue S., Jian S., Guowei P., Jianxun L., Deren Y., Calum D. and Wuzong Z. (2006). Temperature-Dependent Raman Scattering of Silicon Nanowires. J. Phys. Chem. B., 110., 1229-1234.