Enhanced Antitumor Activity of DHMEQ, a NF-κB Inhibitor, on Cholangiocarcinoma Cell Lines by Decreasing the Expression of ABC Transporters

Wunchana Seubwai,1,3* Kulthida Vaeteewottacharn,2,3 Kazuo Umezawa,4 Seiji Okada,6 Sopit Wongkham2,3
1Department of Forensic Medicine, 2 Biochemistry, 3 Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand 4Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan 5Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo, Kumamoto, Japan

Background and Objective: Cholangiocarcinoma (CCA) is markedly resistant to chemotherapy and has a dismal prognosis, but its mechanism of drug resistance is unknown. Several reports have indicated that nuclear factor-kappa B (NF-κB) is constitutively activated in a variety of cancer cells and play a key role in their growth, metastasis and chemoresistance. In the present study, we examined whether NF-κB involved in resistance to anticancer drugs of CCA and whether dehydroxymethylepoxyquinomicin (DHMEQ), a NF-κB inhibitor, can overcome this resistance.

Methods: CCA cell lines were treated with DHMEQ and/or chemotherapeutic drugs and examined for cell viability by MTT assay, apoptosis by IN Cell Analyzer and ABC transporters expression by real time PCR.

Results: NF-κB inhibition by DHMEQ significantly enhanced anti-tumor activity of 5-fluorouracil, cisplatin and doxorubicin. A combination of chemotherapeutic drugs and DHMEQ exerted a significantly enhanced cell death. Furthermore, ABCB1 mRNA level was significantly decreased in DHMEQ treated group.

Conclusions: These findings suggest that the supplementation of DHMEQ in combination with chemotherapeutic drugs enhances the chemoresponsiveness of CCA cells and serves as a potential sensitizer, especially in chemoresistant cell lines.

Keyword: DHMEQ, NF-κB, Cholangiocarcinoma