Testing of a Porosity Measuring Apparatus Based on Comparisons of Pressure Decay Rates

Main Article Content

Warin Koohamaneechote
Watcharapol Chayaprasert
Pawin Thanapattranon
Anak Sukcharoen

บทคัดย่อ

A porosity measuring apparatus based on comparisons of pressure decay rates was developed. The porosity of a granular sample was determinated by conducting two pressurization tests. The apparatus could perform these pressurization tests automatically. In the first and second tests, the sample chamber was empty and filled with the sample, respectively. The air pressure inside the chamber was increased to a specified level and then the inside air was released from the chamber. The pressure in the empty chamber decreased slower than that in the chamber filled with the sample. These different pressure decay rates were used in the calculation of the solid volume and then the porosity of the sample. The four different types of samples were used in this study, three sizes of spherical samples with diameters of 2.35 (±0.01), 5.94 (±0.01) and 37.86 (±0.19) mm and one size of cylindrical samples with a diameter of 21.91 (±1.43) mm and a height of 134.02 (±0.24) mm. The numbers of the sample pieces were ~123,400, 9,435 and 24, and 17, respectively. The porosity measurements from the apparatus were compared against the reference porosities measured based on either the dimensional measurement method or a gas pycnometer. The measurement accuracy was expressed in terms of absolute percentage error and was analyzed using one-way analysis of variance (one-way ANOVA). The main factors were the pressure half-life of the empty sample chamber, initial pressure and type of the sample. The maximum absolute percentage error was 4.44%. In addition, the statistical analysis showed that the main factors and the interaction of each factor pair did not have significant effects on the measurement accuracy (Sig. > 0.05). As a result, the porosity measuring apparatus developed in the present study yielded satisfying accuracy.

Article Details

บท
Electronics and information technology

References

สยาม แกมขุนทด, พานิช วุฒิพฤกษ์, สันชัย อินทพิชัย และ พิทยา แจ่มสว่าง. 2558 ตัวแปรที่มีผลกระทบต่อค่าสัมประสิทธิ์การซึมผ่านของน้ำในดินลูกรังที่มีขนาดคละแตกต่างกัน. วารสารวิชาการพระจอมเกล้าพระนครเหนือ 25(1). 11-19

อภิรัฐ จันทลักษณ์ 2557: การพัฒนาวิธีการวัดความพรุนด้วยวิธีการเปรียบเทียบอัตราการลดลงของความดัน. ปริญญาวิศวกรรมศาสตรมหาบัณฑิต (วิศวกรรมเกษตร) สาขาวิศวกรรมเกษตร ภาควิชาวิศวกรรมเกษตร

Alan, R.H., Jong-Moon, K., Peihong, C., 2014. Accuracy of water displacement hand volumetry using an ethanol and water mixture. Aviation Space and Environmental Medicine 85, 187-190.

Alazmi, B., Vafai, K., 2004. Analysis of variable porosity, thermal dispersion, and local thermal nonequilibrium on free surface flows through porous media. Journal of Heat Transfer-Transactions of the Asme 126, 389-399.

Bradley, J., Nachtsheim, C.J., 2009. Split-Plot Designs: What,Why and How. Journal of Quality Technology 41, 340-361.

Burtseva, L., Salas, B.V., Werner, F., Petranovskii, V., 2015. Modeling of Monosized Sphere Packings into Cylinders. Univ., Fak. für Mathematik

Chayaprasert, W., Chantalak, A., Sukcharoen, A., 2014. Porosity Measurement of Granular Materials by Comparisons of Air Pressure Decay Rates. Transactions of the Asabe 57, 1431-1440.

Dickerson, R.E., Gray, H.B., Haight, J.G.P., 1979. Gas laws and the kinetic theory. In Chemical Principles, 97-102. 2727 Sand Hill Road Menlo Park, California 94025: The Benjamin/Cummungs Publishing Company, Inc.

Encyclopædia Britannica, 2016. Archimedes’ principle. Encyclopædia Britannica Inc. Available at: http://global.britannica.com/science/Archimedes-principle. Accessed 29 February 2016.

Gardner, R.C., 2004. Split-plot Factorial Multivariate Analysis of Variance. in Department of Psychology, T.U.o.W.O., ed., London, Ontario N6A 5C2.

Glover, P., 2001. Porosity. In MSc Petroluem Geology, 43-53. University of Aberdeen, UK: Department of Geology and Petroleum Geology.

Hintz, W., Antonyuk, S., Schubert, W., Ebenau, B., Haack, A., Tomas, J., 2008. Determination of Physical Properties of Fine Particles, Nanoparticles and Particle Beds. In Modern Drying Technology, 279-361. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

Hyndman, R.J., Koehler, A.B., 2006. Another look at measures of forecast accuracy. International Journal of Forecasting 22, 679-688.

Iraguen, V., Guesalaga, A., Agosin, E., 2006. A portable non-destructive volume meter for wine grape clusters. Measurement Science and Technology 17, N92-N96.

Leclaire, P., Umnova, O., Horoshenkov, K.V., Maillet, L., 2003. Porosity measurement by comparison of air volumes. Review of Scientific Instruments 74, 1366-1370.

Makridakis, S., Hibon, M., 1995. Evaluating Accuracy (or Error) Measures. Fontainebleau, France: INSEAD - Technology Management.

Micromeritics Instrument Corp., 2001. AccuPyc TM1330 Pycnometer.

Nithiarasu, P., Seetharamu, K.N., Sundararajan, T., 1996. Natural convective heat transfer in a fluid saturated variable porosity medium. Pergamon 40, 3955-3967.

Zhang, W., Thompson, K.E., Reed, A.H., Beenken, L., 2006. Relationship between packing structure and porosity in fixed beds of equilateral cylindrical particles. Chemical Engineering Science 61, 8060-8074.