New Aglaonema (Araceae) of Thailand

DUANGCHAI SOOKCHALOE*M

Abstract

Aglaonema chermsiriwattanae is a new species in section Chamaecaulon which was collected from peninsular Thailand. The species is distinguished by its repent stem, cataphyll subtending peduncle, spathe ovate and opening towards apex, and peduncle longer than petiole. This species differs from Aglaonema brevispathum, A. costatum in characteristics of the petiole cataphyll, and differs from A. pumilum in characteristics of the spathe, anther dehiscence and stem cataphyll.

Key words.—Aglaonema—Araceae—Chamaecaulon—Thailand

Introduction

Aglaonema is a genus of the family Araceae, distributed in southeastern Asia from northeastern India across southern China and Indonesia through New Guinea. Nicolson (1969) revised Aglaonema of the world, by recognizing 21 species and 2 sections of Aglaonema. There are 2 species of Aglaonema i.e. A. brevispathum and A. costatum in section Chamaecaulon characterized by repent stem differing from erect stem in section Aglaonema which comprise of 19 species. During the Thai-Danish Expedition 1958–1966, Hu (1968), recognized 3 species of Aglaonema. Brown (1984) reported new Aglaonema collected from peninsular Thailand. In this study, A. chermsiriwattanae, is proposed as a new species.

Aglaonema chermsiriwattanae D. Sookchaloem sp. nov., inter species sectionis Chamaecauli caule repente sed absentia cataphylli subtendens petiolum recendens Figure 1.

Creeping herb, stem repent, 3 mm thick, internodes 3–5 mm long, without cataphylls. Petiole 4.5–6.5 cm long, 1 mm thick, inconspicuously sheathing below. Leaf blade ovate, lanceolate, 7–10 cm long, 3.5–5.0 cm wide; base obtuse, truncate; apex acute, acuminate; midrib conspicuous, venation differentiated into 3–4 primary lateral veins; texture herbaceous. Inflorescence solitary. Peduncle 9 cm long. Cataphylls 2, subtending peduncle, 3 cm long, apex apiculate, acuminate, membranaceous. Spathe

* The Forest Herbarium, Royal Forest Department, Ladyao, Chatuchak, Bangkok 10900, Thailand.
Figure 1. *Aglaonema chermsiriwattanae* D. Sookchaloem sp. nov. A: Habit; B: Spadix; C: Stamen; D: Ovary.
ovate and opening towards apex, 1.5 cm long, 1.4 cm wide, base obtuse, apex obtuse to truncate, greenish. Spadix erect, cylindrical, free from spathe, longer than spathe, 2.5 cm long, 4 mm wide, white; stipe 1 cm long; female zone 0.3 cm long; male zone 1.3 cm long, 0.4 cm in diam. Male flowers: stamen connate into quadrangular, truncate synandrium, 1.2 mm long, 0.5 mm thick, apex truncate, thecae exceedingly smaller than stamen, dehiscing by apical pores, anther wall persisting at edge of pore after dehiscing. Female flowers: ovary flask shaped, 1.5–2.0 x 1 mm, discoid, with 1 ovule.

Distribution.—Ta Kanon, Khiri Ratthanikom, Surat Thani

Ecology.—Under shade tree in evergreen forest. Flowering in April.

Holotype.—Surat Thani, in evergreen forest, April 24, 1969, C. Chermsiriwattana & Kasem 1485 (BK).

Notes.—This species is named in honor of Assistant Prof. Chirayupin Chermsiriwattana collected this specimen.

This species is similar to Aglaonema brevispathum and A. costatum in which there is repent stem. The absence of cataphyll subtending petioles distinguishes this species from A. brevispathum and A. costatum. The ovate spathe and spadix longer than spathe in this species differs from A. pumilum in which the narrowly lanceolate spathe and spadix shorter than spathe. Cataphyll surround stem nodes occurs in A. pumilum but not in this species. The thecae are much smaller than stamen and persisting wall at edge of pore after dehiscing occurs in this species. The thecae subequal the stamen in A. pumilum without persistence of wall at the edge of pore after dehiscing.

ACKNOWLEDGEMENTS

I am deeply greatful to Danish National Science Research Council that supported funding for research, Prof. Dr. Kai Larsen (Aarhus University) for his guidance during my stay in Denmark, Dr. Chamlong Phengkai and Prof. Dr. Thawatchai Santisuk (BKF) for their suggestion and encouragement. Great appreciation is due to Dr. Dan H. Nicolson (Smithsonian Institution, Washington) for reading and helpfully comment this manuscript. Special thanks are due to Peter Boyce (K) for his assistance and to Directors and Curators of the following herbaria: AAU, BK, BKF, C, K, L, P. for the loan of specimens used in this study.

REFERENCES