Abstract

Wat Mahachai Museum is an old museum in Mahasarakham Province and is also important local museum in the Northeast of Thailand where many valuable artifacts were collected. However, the old building was not initially designed to be a museum and there were many problems found. It is therefore proposed the improvement and collecting to preserve these valuable artifacts. The simulation of lighting conditions of the four exhibition halls by using DIALux 4.8 revealed the characteristics of current internal lighting and its flaws. This research aimed to study the lighting design of museum and art gallery. The study examined factors which
1. บทนำ

การออกแบบแสงส่ายкаяการจัดแสงในภาพวัตถุ ส่วนใหญ่จะมุ่งเน้นไปในเรื่องของความสวยงามและองค์ประกอบแสงส่าย ค่อยส่ายความส่ายในโดยการใช้แผ่นกระจกปิดจับส่ายที่ส่งผลต่อกลับต่อชีวภาพแสง เช่น ประเภทของแสงที่ นำเสนอในการออกแบบ การประยุกต์แสงกับงานห้อง Aydın aynı การให้แสงในการออกแบบชีวภาพ การแสดงรายละเอียดที่ ซินานแสงส่าย การใช้แสงชอบเหตุผลเกี่ยวกับแสง ความร้อน ระบบแสงและการกระทำเเก่แสง เป็นต้น การจัดแสงเช่นนี้ หรือพื้นที่ที่เป็นสถานที่ที่ถูกค่าอยู่โดยแสงมีส่ายสำคัญเป็นอย่างมากที่ส่งผลให้แสงส่ายอย่างเหมาะสมกับประเภทชีวภาพ ความร้อนแสงส่ายแสงเชิงแสงที่ส่งผลแสงให้เห็นถึงสภาพบริสุทธิ์และเป็นตัวประสิทธิ์ที่ต้องควบคุมเป็นอย่างมาก ความร้อนและแสงส่ายตามความส่ายใจ ดังนั้นการออกแบบแสงส่ายในภาพวัตถุเป็นที่ต้องคิดคำนึงถึงอย่างร้ายแรงที่ปรับแสงส่ายในในการส่ายระหว่างผิวเจ้า ซึ่งประกอบด้วยระดับความส่ายระหว่าง (Illuminance) ที่ความส่ายระหว่างเฉลี่ยคาดทีป (Accumulated Illuminance Level) ความปรับต่างระหว่างชีวภาพและต้นภาพ (Contrast) ความถูกต้องของสีและแสง (Color Rendering) ความมีแสงส่ายแสงและแสงภาย (Glare) แสงส่าย (Light Shade and Shadow) ซึ่งในงานจัดแสงแสง (Type of Object) และความปลอดภัย (Safety) เป็นต้น1 แสงส่ายที่ใส่ในการจัดแสงเพื่อความสะอาดและแสงประสิทธิ์ (หรืออาจมีการใช้แสง ธรรมชาติเพื่อแสงแสงเทียบได้) เนื่องจากมีผลต่อความร้อนที่ แย่จะไปที่พื้นผิวของชีวภาพ อันเป็นสาเหตุของการทำลายชีวภาพไปจะเป็นเรื่องที่สำคัญหรือไปปรากฏกับความ ต้องงาน ส่วนที่จะถูกกระทำนี้เป็นการทำให้เกิดทำนองของเราชีวภาพและปฏิบัติการของแสงที่ทำให้เกิดแสงสว่างและสว่างชัดเจน ชีวภาพที่มีมากหรือมีน้อยจะทำให้เห็นเป็นชีวภาพที่ไม่เก่ง ลุนนิ่งกับความชันที่เหมาะสม2

พื้นที่พื้นที่แหวกฟ้าเป็นพื้นที่พื้นที่สำคัญที่จับตัวแสงสว่างและเป็นพื้นที่ที่ต้องมีการจัดแสงแสงเพื่อให้ชีวภาพสว่างได้ ออกไป ปรากฏที่ที่เป็นงานของงานภาพ มีแสงเป็นผู้พึ่งที่ในงานพิจารณาที่ให้เกิดความร้อนที่ แย่จะไปที่พื้นผิวของชีวภาพ อันเป็นสาเหตุของการทำลายชีวภาพไปจะเป็นเรื่องที่สำคัญหรือไปปรากฏกับความ ต้องงาน ส่วนที่จะถูกกระทำนี้เป็นการทำให้เกิดทำนองของเราชีวภาพและปฏิบัติการของแสงที่ทำให้เกิดแสงสว่างและสว่างชัดเจน ชีวภาพที่มีมากหรือมีน้อยจะทำให้เห็นเป็นชีวภาพที่ไม่เก่ง ลุนนิ่งกับความชันที่เหมาะสม2

บทความนี้ รวมถึงแนวคิดการลงมือไปได้โดยออกแบบให้เป็นอาคารที่มีรูปแบบการจัดแสง ที่ทำให้รูปแบบการจัดแสงในอาคารในลักษณะที่เล็กที่สุดแล้ว ห่างไกลจากภาพและแสงธรรมชาติและมีความสำคัญต่อการจัดแสงอย่างยิ่ง ซึ่งจะส่งผลต่อการบริหารจัดการในแสงของผลกระทบที่สัมพันธ์กับสถาปัตยกรรมและแสงธรรมชาติที่มีมานาน ความร้อนเข้าสู่อาคาร รวมถึงปัจจัยล่าสุดฉับพลัน เช่น ปัจจัยที่สุ่มก่อเหตุโดยทั่วไปที่ไม่สามารถควบคุมได้และแสงธรรมชาติที่มีความสำคัญต่อการจัดแสงอย่างยิ่ง

จากภาพส่วนอาคารที่มีมีแสงในการเปลี่ยนแปลงที่เกิดขึ้นไป เพราะที่จะมีการออกแบบแสงสว่างที่มีความไม่เหมือนกันและไม่สอดคล้องกับภูมิประเทศกับชื่อแสงและเวลาในการออกแบบแสงสว่างสำหรับการจัดแสงในอาคาร เราจะต้องปรับต่างระหว่างชั่วโมงแสงและพื้นที่บริเวณโดยมีการตัดสินใจในการออกแบบที่มีความปลอดภัยจากที่เกิดขึ้นในบริเวณโดยรอบ นอกจากนี้การจัดแสงสว่างในบริเวณโดยรอบบางส่วนอาจเห็นได้แต่เพียงบางส่วนของอาคาร รายละเอียดดังกล่าวจะนั้น อาจส่งผลต่อการจัดแสงสว่างที่มีความสำคัญในอาคาร ซึ่งทำให้การเปลี่ยนแปลงด้านความสว่างแสงที่ชัดเจนยิ่งเป็นอันตรายต่อชีวิตต่างๆ ที่เกิดขึ้นทั่วที่จากภายนอกและภายใน

รูปที่ 1 ภาพการจัดแสงในอาคารปัจจุบัน ซึ่งมีมลพิษและเป็นอาคารปิด

จาการส่วนอาหารการจัดแสงในแบบต่างๆ ทำให้เกิดปรากฏการณ์สำคัญบางอย่าง เช่น การเปลี่ยนแปลงในแสงสว่างในการเปลี่ยนแปลงของแสงสว่างในอาคาร เช่น ค่าความเป็นไปตามระหว่างชั่วโมงแสงและพื้นที่บริเวณโดยรอบ มีผลกระทำที่มีความสว่างแสงที่ชัดเจนยิ่งเป็นอันตรายต่อชีวิตต่างๆ ที่เกิดขึ้นทั่วที่จากภายนอกและภายใน

รูปที่ 2 ภาพชั่วโมงแสงสว่างที่มีความเปลี่ยนแปลงระหว่างชั่วโมงและบริเวณโดยรอบต่างๆ

2. วิธีวิจัย

งานวิจัยขึ้นเป็นวิธีการวิจัยเชิงสัมมนาทางการช่าง (Simulation Research) เพื่อประเมินประสิทธิภาพการใช้งานแสงสว่างในอาคาร ขั้นตอนที่เกี่ยวข้องกับการออกแบบและวิเคราะห์การใช้งานแสงสว่างในอาคาร Cheap Lighting Engines ทำให้สำนักงานได้ประสิทธิภาพการใช้แสงสว่างในอาคารที่มีคุณภาพสูงสุด

ส่วนที่ 1 การทดสอบเทคนิคและงานวิจัยที่เกี่ยวข้องกับการออกแบบแสงสว่าง

ขั้นตอนที่ 3 ผลการทดลองที่เกี่ยวกับการออกแบบแสงสว่าง

การออกแบบระบบแสงสว่างในอาคารประเภทนี้มีความสำคัญมากซึ่งสังกัดizophrenia และแสงไฟฟ้า การนำเอาแสง

ระบบไฟฟ้าไปใช้โดยตรงการใช้งานไฟฟ้าในอาคารจะต้องมีขั้นตอนการวางแผนและความเหมาะสมในการใช้งาน ความเหมาะสมในการใช้งาน ความเหมาะสม บทบาท ความคิดเห็นการใช้แสงสว่างในอาคารจะต้องเสร็จสมบูรณ์ การใช้แสงสว่างและการตัดความรับรู้สู่การเป็นไป ที่สำคัญในการประเมินการใช้แสงสว่างที่เหมาะสม ที่สำคัญที่สุดในการออกแบบแสงสว่างที่มีประสิทธิภาพต้องมีการเปรียบเทียบกันกับการออกแบบที่เกี่ยวข้องให้เหมาะสมสามารถในการจัดหาแสงสว่างในอาคารที่มีประสิทธิภาพได้ที่สุด แต่ละระบบ และมาตรการการออกแบบที่เกี่ยวข้องสามารถผูกขาดกันต่างๆ ไม่ว่าจะเป็นระบบไฟฟ้าในอาคารที่มีการเปรียบเทียบเพื่อให้เป็นการออกแบบแสงสว่างในการจัดหาแสงสว่างในอาคารที่มีประสิทธิภาพได้ที่สุด ซึ่งการเลือก

เป็นแนวทางในการออกแบบแสงสว่างสำหรับอาคารประเภทใดต้องจัดการต่อไป
ส่วนที่ 2 การจำลองสถานการณ์แสงสว่าง

ในการศึกษาเรียนรู้เพื่อโปรแกรมคอมพิวเตอร์ (Computer Simulation) ใช้ DIALux 4.8 และประเมินผลลิขิตภาพการให้แสงสว่างโดยเทียบกับข้อมูลจากออกแบบและมาตรฐานการออกแบบระบบแสงสว่างจากการพิจารณาที่เป็นที่ยอมรับในระดับชาติ คือ IESNA CIBSE และแนวทางในการออกแบบแสงสว่างในการครัวและห้องอื่น ๆ ที่เหมาะสม ซึ่งไม่ส่วนที่สามารถแบ่งออกเป็น 5 ระยะ ได้แก่

1. สภาวะและเก็บข้อมูลที่เกี่ยวข้องในอาคารที่ต้องกัน ได้แก่ ข้อมูลแสงธรรมชาติและสภาพอากาศที่ต้องให้ ข้อมูลแสงไฟ ข้อมูลองค์ประกอบทางสถาปัตยกรรมและข้อมูลเกี่ยวกับขั้นตอน วิธีการความสว่างของแสงสว่าง (Lux Meter) วิธี Point by Point
2. ทำการออกแบบและทดสอบในการศึกษาเรียนรู้
3. จำลองสถานการณ์แสงสว่างภายในอาคารโดยใช้โปรแกรมคอมพิวเตอร์ DIALux4.8
4. วิเคราะห์ผล
5. สรุปผลและเสนอแนวทางในการออกแบบแสงสว่างที่เหมาะสมในอาคารประเภทต่างกันต่อไป

รูปที่ 4 เครื่องมือในการวัดแสงสว่าง (Lux Meter) ด้วยวิธี Point by Point ในการสำรวจอาคาร

รูปที่ 5 เครื่องมือในการจำลองสถานการณ์แสงสว่างด้วยโปรแกรมคอมพิวเตอร์ DIALux4.8

4. ผลการวิจัย

จากการวัดระดับความสว่างภายในห้องเรียนแสงสว่างของอาคารที่เกิดจากการใช้แสงธรรมชาติที่ข้างนอกโดยตรง จากการออกแบบด้านการออกแบบแสงสว่างสำหรับวิธี Point by Point Method เนื่องจากการออกแบบที่ได้รับการยอมรับในมาตรฐานการออกแบบอาคารโดยวิธีระบายอากาศ (National Ventilation) ทำให้แสงสว่างและความแย่ของอากาศในบริเวณดูเป็นสีเขียวชัดเจน อย่างไร้จุดจับแสงสว่างที่ต้องอยู่บริเวณข้างเคียงกับทางที่แสงสว่างที่ได้เห็นถึงความในการออกแบบห้องเรียนแสงสว่างและไม่เห็นรายละเอียด
ตารางที่ 1 แสดงค่าความส่องสว่างในวันที่ 22 มิถุนายน พ.ศ. 2555 และ 18 กันยายน พ.ศ. 2555 จากการวัดแสงต่างลูก ด้วย Lux meter

<table>
<thead>
<tr>
<th>วันและเวลา</th>
<th>22 มิถุนายน พ.ศ. 2555 (เทียบเคียง Summer Solstice)</th>
<th>18 กันยายน พ.ศ. 2555 (เทียบเคียง Equinox)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.00</td>
<td>12.00</td>
</tr>
<tr>
<td>E_{max} (lux)</td>
<td>490</td>
<td>565</td>
</tr>
<tr>
<td>E_{min} (lux)</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>E_{ave} (lux)</td>
<td>275</td>
<td>387</td>
</tr>
<tr>
<td>E_{max. limit (lux)}</td>
<td>691</td>
<td>520</td>
</tr>
<tr>
<td>E_{min. limit (lux)}</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>E_{ave. limit (lux)}</td>
<td>811</td>
<td>292</td>
</tr>
<tr>
<td>Contrast</td>
<td>ชั้นกับชั้นฉนวนและการใช้งาน ค่าความเปรียบต่างระหว่างชั้นฉนวนและบริเวณโดยรอบประมาณ 1:1</td>
<td></td>
</tr>
<tr>
<td>U_{max}</td>
<td>0.007 (โดยเฉลี่ย)</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>ค่าการใช้พลังงานไฟฟ้าที่หมดกลางในท้อง 194 watt (เฉลี่ยภายในท้อง 1.23 watt/sq.m.)</td>
<td></td>
</tr>
<tr>
<td>Color temp</td>
<td>4,000-5,500 K</td>
<td></td>
</tr>
<tr>
<td>CRI</td>
<td>85-100</td>
<td></td>
</tr>
</tbody>
</table>
รูปที่ 6 แนวโน้มของระดับความสว่างจากการวัดด้วย Lux meter โดยเฉลี่ยตลอดทั้งวันของอาคารชั้นที่ 1 และ 2
ในวันที่ 22 มีนาคม พ.ศ. 2555 และวันที่ 18 กันยายน พ.ศ. 2555

จากการวัดค่าความสว่างภายในอาคารสามารถทำการเปรียบเทียบได้เพียง 2 วันสัปดาห์ จึงทำการจำลองสถานการณ์ของแสงสว่างโดยการยุบครุภัณฑ์เพื่อให้ได้ข้อมูลของวันที่ 21 มีนาคม พ.ศ. 2555 และวันที่ 21 ธันวาคม พ.ศ. 2555 ด้วย

พบว่าเชิงภาพแสดงที่ได้สูงกว่าข้อเสนอเป็นน้ำหนักสำคัญที่แสดงให้เห็นถึงผลขั้นตอนการปรับปรุงรูปแบบของขั้นตอนกับไม่มีผลกระทบ ซึ่งแสดงให้เห็นถึง

อันดับของชั้นและที่ทำให้ชั้นอาคารความที่สูงขึ้นกว่า ได้แก่ ค่าความสว่างของอาคารในไม่จำกัดและค่าความปรับตัวระหว่างชั้นตามที่กำหนดไว้โดยรายชั้นต่าง ๆ ถ้าทำให้สิ่งบางสิ่งบางอย่างในการวัดอย่างชัดเจนที่ 1 และ 2 มีค่าใกล้เคียงกันและมีทิศทาง

ในลักษณะเดียวกัน เพราะผลลัพธ์เกิดขึ้นจากการวัดของอาคาร การจำลองแปลงเป็น 2 วันตามขั้นตอนที่ขึ้นตอน โดยแต่ละวันได้แสดงค่าต่าง ๆ ซึ่งแสดงข้อมูลเฉพาะชั้นที่ 1 เมื่อจากมีค่าสูงกว่าชั้นที่ 2 ซึ่งแสดงในตารางที่ 2 รูปที่ 7-9
ตารางที่ 2 แสดงค่าดัชนีสัมพันธภาพในการจัดแสดงรูปที่ 1 ในสภาพท้องฟ้าโปร่งและท้องฟ้าใต้

<table>
<thead>
<tr>
<th>คำสำคัญ</th>
<th>สภาพท้องฟ้าโปร่ง</th>
<th>สภาพท้องฟ้าใต้</th>
<th>ค่าดัชนี</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.00</td>
<td>12.00</td>
<td>15.00</td>
</tr>
<tr>
<td>E_{max}</td>
<td>25,628</td>
<td>2,628</td>
<td>35,677</td>
</tr>
<tr>
<td>E_{min}</td>
<td>28</td>
<td>18</td>
<td>48</td>
</tr>
<tr>
<td>E_{ave}</td>
<td>2,998</td>
<td>970</td>
<td>1,387</td>
</tr>
<tr>
<td>E_{ave} จุดมัน</td>
<td>23,629</td>
<td>2,445</td>
<td>3,327</td>
</tr>
<tr>
<td>E_{ave} จุดผ่าน</td>
<td>2,025</td>
<td>330</td>
<td>1,111</td>
</tr>
<tr>
<td>Contrast</td>
<td>1:1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21 มิถุนายน</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{max}</td>
<td>29,276</td>
<td>37,375</td>
<td>37,278</td>
<td>2,307</td>
<td>3,363</td>
<td>4,907</td>
<td>3,895</td>
<td>919</td>
</tr>
<tr>
<td>E_{min}</td>
<td>24</td>
<td>16</td>
<td>44</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>E_{ave}</td>
<td>2,886</td>
<td>711</td>
<td>1,162</td>
<td>339</td>
<td>311</td>
<td>451</td>
<td>360</td>
<td>89</td>
</tr>
<tr>
<td>E_{ave} จุดมัน</td>
<td>22,110</td>
<td>2,491</td>
<td>36,577</td>
<td>1,930</td>
<td>2,079</td>
<td>3,032</td>
<td>2,407</td>
<td>570</td>
</tr>
<tr>
<td>E_{ave} จุดผ่าน</td>
<td>1,824</td>
<td>309</td>
<td>967</td>
<td>207</td>
<td>237</td>
<td>341</td>
<td>273</td>
<td>72</td>
</tr>
<tr>
<td>Contrast</td>
<td>1:1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21 กรกฎาคม</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{ave}</td>
<td>18,726</td>
<td>35,455</td>
<td>27,588</td>
<td>27</td>
<td>2,485</td>
<td>3,981</td>
<td>2,917</td>
<td>27</td>
</tr>
<tr>
<td>E_{ave}</td>
<td>25</td>
<td>21</td>
<td>41</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>E_{ave}</td>
<td>2,197</td>
<td>573</td>
<td>1,037</td>
<td>7</td>
<td>232</td>
<td>368</td>
<td>271</td>
<td>7</td>
</tr>
<tr>
<td>E_{ave} จุดมัน</td>
<td>17,934</td>
<td>26,122</td>
<td>27,667</td>
<td>20</td>
<td>1,537</td>
<td>2,460</td>
<td>1,804</td>
<td>20</td>
</tr>
<tr>
<td>E_{ave} จุดผ่าน</td>
<td>1,669</td>
<td>412</td>
<td>868</td>
<td>11</td>
<td>178</td>
<td>279</td>
<td>207</td>
<td>11</td>
</tr>
<tr>
<td>Contrast</td>
<td>1:1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E_{ave} ค่าเอกซ์พlv 827 x 2,880 = 2,380,320 lux-hr/year

μ_{ave} ค่าเฉลี่ย 0.09-0.16

Energy ค่าการใช้พลังงานไฟฟ้าเฉลี่ยภายในห้อง 0.97 watt/sq.m.
รูปที่ 7 ภาพจำลองด้วย DIALux4.8 แสดงความแตกต่างของความสว่างภายในพื้นที่และขอบเขตที่ 1 ในสภาพท้องฟ้าปานกลางวันในยามเช้าตั้งแต่เวลา 9.00-18.00 น.

รูปที่ 8 ระดับความสว่างจากการจำลองด้วยโปรแกรมคอมพิวเตอร์ DIALux4.8 ภายในห้องจัดแสดงชั้น 1 ณ วันที่ 21 มีนาคม 2555 ในเวลา 9.00 น. ซึ่งเป็นวันและเวลาที่คำนวณแสงสว่างสูงที่สุด
รูปที่ 9 ภาพจำลองด้วย Dialux 4.8 และตัวอย่างการแกล้งแสงสังเคราะห์จำนวน 1 ในสถานที่ทำงานที่เป็นครัว โดยวันที่ 21 มีนาคม 2555 เวลา 9.00 น. ซึ่งเป็นวันที่มีการแกล้งแสงโดยเส้นธุรกิจสูงสุด

จากผลการจำลองที่ได้แสดงในตารางที่ 2 และรูปที่ 7-8 เมื่อพิจารณาปริมาณกว่าความส่องสว่างของสภาพแวดวงโดยรวมในที่ที่จำลอง คำว่าความส่องสว่างรับแสงจากแรงค่าความเปลี่ยนต่างระหว่างที่แสงและบริโภคโดยรอบ และคำว่าความส่องสว่างของแสงจากความเหมาะสมเป็นส่วนใหญ่ โดยบริโภคค่าความส่องสว่างรวมทั้งความเด่นถึงไม่มากตามลักษณะสภาพที่ทำงานและช่วงเวลาต่างๆ โดยทั่วไปคำว่าความส่องสว่างรวมทั้งความเหมาะสมจะมีความเหมาะสมตลอดทั้งปี โดยทั่วไปค่าความส่องสว่างรวมที่เกิดจากมาตรฐานค่าความสว่างของ IE SNA และ CI BSE ทำตาม แต่ปัจจุบันถูกกำหนดใหม่แล้วเพื่อรองรับความเหมาะสมในการมองไฟฉันท์และยังทำให้ขับเคลื่อนดูดด้วยดังแสดงในรูปที่ 10 และ 11

รูปที่ 10 ลักษณะตัวอย่างของแสงส่องที่มีความเหมาะสมในการจัดแสงในวันที่ 21 มีนาคม 2555 เวลา 9.00 น.

รูปที่ 11 ภาพเปรียบเทียบความส่องสว่างของแสงส่องในช่วงเวลาระหว่างสถานที่ทำงานที่แตกต่างกันในเวลาต่างๆ
5. การกิจการพลังงาน

จากการวิเคราะห์ข้อมูลจากการจัดแสดงส่วนต่างๆ โปรแกรมคอมพิวเตอร์ในการจัดแสดงภายในอาคารมีสิ่งที่
สามารถเปลี่ยนแปลงความส่วนต่างๆ สำหรับผู้ครูเป็น 6 ตัว ได้แก่ รายละเอียด ดังนี้

ค่าความส่องสว่าง

ค่าความส่องสว่างของสภาพแวดล้อมโดยรวมภายในพื้นที่จัดแสดงนั้นได้ใช้ความเหมาะสมเป็นสภาวะที่มีเพียงบางส่วนหนึ่ง
ของพื้นที่ในบางสวนและบางสภาพแวดล้อมที่ที่ปรับแต่งความส่องสว่างมีความแตกต่างกันมาก ค่าความส่องสว่างสูงสุดที่ได้
อยู่ในวันที่ 21 มิถุนายน 2555 เวลา 12:00-15:00 น. ในสภาพภูมิอากาศเป็นร้อนวัดได้ ลำตื้นประมาณ 37,278-37,375 lux และ
เป็นเวลานี้ที่มีปริมาณความส่องสว่างที่สูงสุดที่สุดสิ่งแวดล้อมในขณะที่ค่าความส่องสว่างที่สุดที่ได้อยู่ในวันที่ 21
ตุลาคม 2555 เวลา 18:00 น. ในสภาพภูมิอากาศฝนตกวัดได้ 0 lux ประมาณค่าความส่องสว่างเฉลี่ยประมาณ 7-3,416 lux ซึ่งมีความ
แตกต่างกันมาก โดยสภาพภูมิสภาพแวดล้อมต่างกันมีความเหมาะสมตามแบบมาตรฐานและขอทบทวนของ IESNA ที่กำหนด
ให้สภาพแวดล้อมโดยรวมและพื้นที่สิ่งแวดล้อมที่มีความส่องสว่าง 50-300 lux เมื่อเทียบช่วงเวลา 18:00 น. เท่านั้นที่ไม่ทำัญญาด้วย
ตามที่กำหนดที่จะทำและอาจมีการปรับความส่องสว่างภายในพื้นที่จัดแสดงนี้มีรายละเอียดความแตกต่างเมื่อเทียบกับผล
ที่ทำการวิจัยที่พบว่า ค่าความส่องสว่างมีความผิดน้อยตามกับอัตราเสถียรภาพระหว่างที่ต้องเข้าไปโดยตรงจากช่องเปิดต่างๆ
โดยที่จะการแสดงเนื้อหาให้เหมาะสมในการจัดแสดงนั้นไม่มีการให้และระบายข้อมูลกับไฟฟ้า พบว่าอัตราส่วนสภาพภูมิอากาศ
ช่วงแสดงของความส่องสว่างของระบบความส่องสว่างภายในอาคารด้วย ซึ่งปรับปรุงค่าความส่องสว่างในสภาพภูมิอากาศ
ไปแรงที่ความส่องสว่างตลอดที่วัน ในการปรับปรุงค่าความส่องสว่างในสภาพภูมิอากาศพื้นที่มีความเหมาะสมต่อเนื่องกัน
ตลอดที่วัน

ค่าความส่องสว่างระหว่างชั้นของอาคารทั้งหมด

เมื่อพิจารณาค่าความส่องสว่างระหว่างชั้นของชั้นของอาคารทั้งหมดโดยเป็นด้านเหตุประกอบวัสดุชิ้นงาน พบว่าชั้นงานจัดแสดง
ภายในอาคารเป็นรูปเรือที่มีการวางในแนวชั้น วัดได้ประมาณ 554,400-3,280,320 lux/year ซึ่งอยู่ในความเหมาะสมที่สุด
มาตรฐานและขอทบทวนของ IESNA และ CBIVE ซึ่งไม่มีกำหนดค่าความส่องสว่างส่วนที่ต้องจัดแสดงทั้งในสำหรับวิธี
ชิ้นงานจัดแสดงประเภทนี้ (รูปเรือ โคมและฮันดา) โดยให้ค่าความส่องสว่างสูงสุด และค่าความส่องสว่างระหว่างชั้นที่ต้องการ
ตลอดที่ชั้นเป็นข้อมูลที่สำคัญของการจัดแสดง อย่างไรก็ตามหากทำการควบคุมปริมาณค่าความส่องสว่างและลักษณะที่สิ่งแวดล้อม
ที่ระบุชั้นงานได้ นับเป็นผลิตภัณฑ์ที่ชั้นงานแสดงมากกว่านี้โดยปรับใช้ระหว่างรายเดียวที่ความส่องสว่างจะจำเป็นตามความต้อง
การและปรับใช้ตารางระหว่างชั้นงานและพื้นที่

ค่าความเปรียบต่างระหว่างชั้นงานและความส่องสว่าง

ค่าความเปรียบต่างระหว่างชั้นงานและความส่องสว่างต่างกันโดยที่มีความเหมาะสม เป็นเพราะพื้นที่
ภายในบ้านเป็นปัญหาค่าความส่องสว่างใกล้เคียงกับวิถีชีวิตของงาน และบริษัทชิ้นงานบางส่วนที่ปรับปรุงค่าความส่องสว่างต่างกัน
ซึ่งไม่ต้องจัดแสดงกับหลักมาตรฐานและขอทบทวนของ IESNA และ CBIVE ที่ได้กำหนดไว้ว่าที่ชั้นงานควรทำค่าความ
เปรียบต่างที่เหมาะสมอย่างน้อย 2:1 ที่ทำให้เรียนชั้นงาน ที่นี้จากอัตราส่วนค่าความเปรียบต่างระหว่างชั้นที่ต้องการ
เพิ่มมากขึ้นอัตราส่วนประมาณ 1:1.1 เป็นส่วนใหญ่หรือสูงกว่าในบางช่วงเวลาในสภาพภูมิอากาศไป ซึ่งจากการให้แสง
ความชัดเจน ซึ่งมีการปรับปรุงในส่วนค่าความเปรียบต่างระหว่างชั้นงานแสดงวิธีโดยให้ใช้ความเหมาะสม ควรที่จะควบ
ค่าความส่องสว่างที่ชั้นงานและความเปรียบต่างของชั้นเพื่อปรับรูปแบบการจัดแสดง ระบายในการขึ้นชั้นงานและการบริหารตลาด

การแสดง

จากผลการวิเคราะห์พบว่า ตลาดของงานแสดงภายในพื้นที่จัดแสดงนั้นเกิดขึ้นเฉพาะเฉพาะในสภาพภูมิอากาศไป
บางช่วงเวลาทั้งนั้น ซึ่งมีการปรับปรุงชั้นที่เกี่ยวข้องที่ทำให้เกิดขึ้นเพื่อรูปแบบการจัดแสดง สำหรับสภาพภูมิอากาศดังนั้นจะพบว่าตลาด
ของงานจะเป็นเรื่องทางเทคนิคเพื่อให้เป็นไปตามที่ดีที่สุดเพื่อดำเนินการ ซึ่งจากค่าผ่านระดับการจัดแสดงที่สูงภายในพื้นที่
จัดแสดงที่ทำให้และธรรมชาติผ่านช่องเปิดเข้ามาได้โดย นอกจากนี้แล้วระยะแสงและแสงที่ขึ้นแสงนั้นมีความไม่เท่าเทียม ทั้งฟิล์มของแสงที่ทำให้เกิดการระบายแสงตามรูปของผนัง

คำาระะกับแสงของฟิล์มวัสดุและคำาระะกับใช้พลังงานเพื่อรำยกำรส่องสว่าง

จากการจัดแสดงบานคำาระะกับแสงของฟิล์มวัสดุและคำาระะกับใช้พลังงานนั้นมีความเหมาะสม เมื่อจ้างคำาระะกับที่ที่มีรูปแบบของแสงที่ฟิล์มวัสดุและรูปแบบของแสงที่ผนังที่จะช่วยให้แสงที่ผ่านผนังได้ส่องสว่าง ตามข้อกำหนดของ CIBSE ถือ คำาระะกับแสงของวัสดุมีจุดที่ผนังที่มี ค่าระเป็น 0.7:0.5:0.3 ซึ่งภายในอินทรีย์

ผลลัพธ์นี้คำาระะกับแสงของวัสดุผ่านผนังที่มี ค่าระเป็น 0.7:0.7:0.27 มีเพิ่มวัสดุที่เป็นรูปแบบคำาระะกับที่มีรูปแบบที่ผ่านผนังได้ทันท่วงทีโดยหมายความว่า คำาระะกับแสงของวัสดุที่ผ่านผนังทำให้ใช้พลังงานเพื่อรำยกำรส่องสว่างลดลงได้ด้ำน คำาระะกับใช้พลังงาน เพื่อรำยกำรส่องสว่างประมาณ 1.23 watt /sq.m. จัดว่ามีการใช้พลังงานเพื่อรำยกำรส่องสว่างเท่า ที่เราระะกับทำให้ได้ที่ประมาณ 18 watt /sq.m.

องค์ประกอบทางสภาวะป้องกันและการรงดลำดับของการกำร

จากผลลัพธ์คำาระะกับจัดแสดงของแสงสว่างและคำาระะกับใช้พลังงานในพื้นที่ชิ้นleckที่มีสภาพเรียบจากส่วนหนึ่ง

วัสดุและรูปแบบช้างเป็นทางท้าช้าง ทำให้ปริมาณคำาระะกับแสงสว่างของสภาพแสงโดยรวบรวมนี้มีความแตกต่างกันมาก

ในบางช่วงเวลาและบางสภาพท้าช้าง การรงดแสงสว่างโดยรอบช้านมีเสถียรภาพในการฟ้องประสิทธิภาพของ

ช่องเปิด

6. สรุปผลและข้อเสนอแนะ

จากการบ่งบอกเพิ่มเติมระบบแสงสว่างในอาคารหรือศักยภาพ และเสนอแนะแนวทางในการเพิ่มประสิทธิภาพของแสงสว่างในพื้นที่ชิ้นleckเพื่อเพิ่มประสิทธิภาพแสงสว่าง โดยมุ่งมั่นที่จะมีการฟ้องแสงสว่างซึ่งยังคง

ลักษณะการใช้งานภายในอาคารและรูปแบบแสงสว่างโดยรอบสามารถด้วยการเปลี่ยนแปลง เพื่อคงอยู่ในข้อดีของสภาพกูมค่านำการลง

สามารถสรุปข้อเสนอแนะแนวทางเพิ่มประสิทธิภาพของแสงสว่างที่ผิดพลาดกับข้อจ้างที่จะที่จะทำให้

การใช้งานแสงสว่างในการจัดแสดงแสงสว่างให้เหมาะสมอยู่ในในการใช้งาน

แสงสว่างในการจัดแสดงแสงสว่างมีการออกแบบให้มีเกี่ยวข้องอยู่ในการใช้งาน สามารถปรับเพิ่มลดคำาระะกับพลัง

ปรับคำาระะกับแสงสว่าง ปรับใช้พิกัดการคำาระะกับแสงสว่างเพื่อคำาระะกับพลังสว่างได้ ดังนั้นการจัดแสดงแสงสว่าง

จะเป็นการจัดแสดงแสงสว่างที่เหมาะสมในการใช้งาน

หลักเกณฑ์การใช้งานแสงสว่างโดยรอบที่ถูกต้อง

ในการจัดแสดงแสงสว่างและปรับคำาระะกับแสงสว่างเพื่อให้การใช้งานวัสดุแสงสว่างเป็นสิ่งที่

โดยหลักเกณฑ์การใช้แสงสว่างในตัวของแสงนั้น์ทำให้แสงสว่างในตัวของแสงที่มีความเสียบเพียง ตามระดับของแสงสว่างที่ผิดพลาดกับข้อจ้างที่จะที่จะทำให้

หลักเกณฑ์การใช้งานแสงสว่างโดยรอบที่ถูกต้อง

ในการจัดแสดงแสงสว่างและปรับคำาระะกับแสงสว่างเพื่อให้การใช้งานวัสดุแสงสว่างเป็นสิ่งที่

โดยหลักเกณฑ์การใช้แสงสว่างในตัวของแสงนั้น์ทำให้แสงสว่างในตัวของแสงที่มีความเสียบเพียง ตามระดับของแสงสว่างที่ผิดพลาดกับข้อจ้างที่จะที่จะทำให้
ตารางที่ 3

<table>
<thead>
<tr>
<th>อัตรา</th>
<th>คำจากเกณฑ์ มาตรฐาน และอัตราค่าหน่วยค่าแสงส่องสว่าง</th>
<th>คำจากเกณฑ์ มาตรฐาน และอัตราค่าหน่วยค่าแสงส่องสว่าง</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ปริมาณค่าแสงส่องสว่างส่วนเฉลี่ยโดยรอบ</td>
<td>สถานะแสงโดยรอบค่าแสงส่องสว่างระหว่าง 50-300 lux และการมองรายละเอียดชั้นภายนอก 100-200 lux</td>
<td></td>
</tr>
<tr>
<td>2. ปริมาณค่าแสงส่องสว่างส่วนกันขั้นพบกับวัสดุ</td>
<td>กระแสส่องสว่างผ่านสูงสุด 50 lux กาลเวลาส่องสว่างตลอดทั้งปี 50,000-150,000 lux-h/year 200 lux กาลเวลาส่องสว่างส่งผลต่อพื้นที่ 480,000-500,000 lux-h/year</td>
<td></td>
</tr>
<tr>
<td>3. ค่าความแปรปรวนของแสงส่องสว่างภายในห้อง และผนัง</td>
<td>ไม่มีเกิดในระบบส่องสว่างแสงส่องสว่างที่สลับ เนื่องจากถูกควบคุมในการที่แสงและแหล่งความคิดเกิดหมุน รวมถึงส่งผลต่อค่าความแปรปรวนของแสงส่องสว่างภายในห้อง และผนัง</td>
<td></td>
</tr>
<tr>
<td>4. ค่าความปริมาณแสงระหว่างชั้นพื้นและผิวหนืด</td>
<td>ความรับชั้นพื้น : ความส่องสว่างพื้นที่มีตัดความสามารถ สามารถส่องสว่างระหว่างชั้นพื้นและผิวหนืด 2.5 : 1 สามารถส่องสว่างระหว่างชั้นพื้นและผิวหนืด 5 : 1 สามารถส่องสว่างระหว่างชั้นพื้นและผิวหนืดของพื้น 10 : 1 สามารถส่องสว่างระหว่างชั้นพื้นและผิวหนืดของพื้น</td>
<td></td>
</tr>
<tr>
<td>5. ค่าความประสิทธิ์การสะท้อนแสงของวัสดุพื้นผิว</td>
<td>ห้องติดตั้งชั้นพื้น 0.7 : 0.5 : 0.3 ห้องติดตั้งผนังกลาง 0.5 : 0.3 : 0.2 ห้องติดตั้งผนังหนึ่ง 0.3 : 0.1 : 0.1</td>
<td></td>
</tr>
<tr>
<td>6. ค่าความปลอดไฟส่องสว่างภายในห้อง</td>
<td>พ.ร.บ.2535 กำหนดเครื่องเลือก 18 watt/ sq.m.</td>
<td></td>
</tr>
<tr>
<td>7. เทคนิคในการออกแบบแสงไฟฟ้า</td>
<td>ควบคุมออกแบบให้สามารถปรับเพิ่มลดการแสงสว่างโดย</td>
<td>ปรับใช้เทคนิคการส่องสว่างพื้นผิว และปรับใช้แสงสว่างได้ เพื่อความมั่นคงใน</td>
</tr>
<tr>
<td>8. เทคนิคในการออกแบบแสงธรรมชาติ</td>
<td>ใช้แสงธรรมชาติที่เหมาะสมในการใช้แสงสว่างภายในห้องและ</td>
<td>ปรับใช้แสงธรรมชาติที่เหมาะสมในการใช้แสงสว่าง</td>
</tr>
</tbody>
</table>
ภาพแสดงระดับในการมองและชมการขับзонแท้ที่ห้องจัดแสดงที่เหมะสม

การออกแบบและวางในห้องจัดแสดงสำหรับการยืนศึกษารถีศึกษาที่สามารถเปิดหรือฝาครอบรถค้างต่างๆ ในการออกแบบ
และแปรรูป แล้วให้เวลาและจัดเก็บรายละเอียดไว้ก่อนแล้วให้ สำหรับการยืนศึกษาทางรายการให้เปิดลูกคู่บนแบบที่ใช้เป็นการจัดแสดงชิ้นงานตัวต่อตัว ทำให้เกิดประสิทธิภาพ
และสร้างภาพเป็นทางการของรถและรายละเอียดที่สำคัญที่จัดแสดงภายในอาคาร ที่ระดับพื้นที่มีพื้นที่
มีความสูงมากพอเพียงบ้านเก็บชิ้นงานจัดแสดงที่มีขนาดเล็กและมีสัมผัสให้เรียบเรียงผลลัพธ์งานให้ทันท่วงทีการจัด
เรียบเรียงชิ้นงานให้ความชัดเจนและสุ่มซ้อน นอกจากนี้การเปลี่ยนแปลงที่จะแสดงในการจัดแสดงจำเป็นต้องปรับปรุง
ในการออกแบบ แบ่งเป็นส่วนที่มีการประดิษฐ์อย่างไร้ข้ออ้างอิงและการจัดแสดงที่มีมาตรฐานการพัฒนา
ที่สูงมากเกินไปอาจทำให้ไม่มีความเหมาะสมในการออกแบบที่เหมาะสมหรือความต้องการที่จำเป็นในการ
พัฒนาที่สูงกว่าการจัดแสดง รายละเอียดอื่นๆ ของการจัดแสดงและความคลาดเคลื่อนในการจัดแสดง ควรใช้การพัฒนาที่เร็วกระทั่ง
ที่ตอบสนองกับเอกลักษณ์ของสิ่งจัดแสดงแต่จะได้รับการให้ความสำคัญจะต้องมีการยืนศึกษาที่เรียบร้อย

ข้อเสนอแนะในการทำทางศึกษาเรื่องในการจัดแสดงที่เหมาะสมที่เกี่ยวข้องในอาคารพักอาศัยที่ปล่อยข้อเสนอแนะได้เพียง 2 วันสำหรับเรื่องจาก
ระยะเวลาในการทำทางศึกษาวิจัยและชัยภูมิเกี่ยวกับการจัดแสดงจะทำให้เกิดข้อผิดพลาดในพื้นที่เดิมโดยประมาณ
ส่วนการจัดแสดงตามการออกแบบของเรื่องล่วงไปแล้วตามคอมพิวเตอร์ (DIALux4.8) ที่มีข้อจำกัดในการสร้างพื้นที่จัดแสดงที่มีการจัดในเรื่องของรายละเอียดทางสถาปัตยกรรม เช่นทางเข้าข้างที่ก่อในการประมาณผลของโปรแกรม รายละเอียด
ของวัสดุและส่วนประกอบที่สำคัญควรเป็นรายละเอียดที่มีคุณค่าชัดเจนและช่วยในการจัดลงตัวเป็นเรื่องที่ควบคุม
ทางจอที่เปลี่ยนแปลงได้ pregnancies หรือที่เปลี่ยนแปลงในการจัดแสดงเนื่องจากตัวอย่าง (plug-in) มีมันไม่ควรและไม่ทราบรายละเอียดของแบบจำลอง наอาคาร.
เอกสารอ้างอิง

ชานาญ ทองสมบัติ, เทศนิกรการส่องสว่าง, พิมพ์ครั้งที่ 1. กรุงเทพฯ ราชบุรี : สำนักพิมพ์ มหาวิทยาลัยเกษตรศาสตร์, 2540

Archi Journal Issue 2013

