Abstract

This project proposes to study a process of dehumidification of moist air of a row house, In specific: a 3 storey row house, Supalai ville on Ratchadapisak road. The internal area can be divided into 3 main functions; Living area, Pantry area and Privacy area. The objective is stressed to study of desiccant the behavior of moist air that occurs from activities in building. Simulation 1 Normal: not control humidity, it refer to compare efficiency with others. Simulation 2 Ventilation: To move moist air to another place. By test with wind speed 2 levels at 0.6 m/s and 2.4 m/s (measure at 10 cm. from fan) to compare efficiency humid control in different wind speed. Simulation 3 Desiccant: by test with Eco Dry 1 Kg and 2 Kg to compare efficiency of different desiccant. Conclusion of Benefit and Limited of each factors (1) Ventilation is a method that can reduce humid in the air all of time but in this experiments ventilation is moved moist air from a place to another place. It dose not obliterate moist air. Procedure that reduces moist air should be created outlet for removing moist air to outside (2) Eco Dry Desiccant is a method that reduces moist air quickly in a period of time. It has limit of point of saturation and cost of desiccant. It can use local material such as coal from wood, coconut, etc instead.

Keywords: Humidity, A row house, Ventilation, Eco dry desiccant
1. บทนำ

ภาพความลึกซึ้งในเนื้อเรื่องได้เปลี่ยนแปลงจากกลางไปกลางห้องส่วนที่จะหาหรือสร้างที่พักอาศัยที่มีบริเวณและอยู่
อย่างมีชีวิตต้องช่วยเป็นไปได้โดยผู้มีสิทธิ์ที่จะทำตามความต้องการขององค์การ
ที่เลือกที่จะอยู่ในบ้านที่มีสิทธิ์ทั้งสิ้น การสร้างที่พักอาศัยนิยามสิทธิ์ที่ไม่มีบริเวณบ้าน หน่วยงานว่าบ้านจะต้องมีและ
มีความสุขที่จะทำได้ไม่ได้ก็เพราะฉะนั้น หรือบ้านแย่ การที่ฝ่ายผู้อาศัยสิทธิ์มีผลลัพธ์ที่จะทำได้ก็อย่างนั้นของเรา
มีปัญหาเรื่องการที่อยู่ของบ้าน และว่า เสียง บรรยากาศ บริเวณที่อยู่ในชีวิตความสุขในบ้าน

ความชื้นในบ้านแผนภูมิสิ่งที่มักถูกออกแบบก็กลายส่องแสงและเป็นสิ่งที่สำคัญอย่างยิ่งที่จะต้องคำนึงถึงในการ
ออกแบบ เนื่องจากมีการเรียนนักใช้ระบบโครงสร้างและเครื่องกลังน้ำที่ไม่ใช่เรื่องเล็ก
เป็นสิ่งที่ทำให้มีปัญหาเรื่องความชื้นและมากที่บ้านและเกิดความต้องการผลิตไม้อยู่ในภาวะความสงบเกิดผลลัพธ์เหตุการ
บ้านจะอยู่ในระดับดุสุทธิสมอง (THERMAL COMFORT)

ความตั้งหัวใจของความชื้นกับการสร้างอาคาร ของสิ่งมีชีวิตทางบริการ (โดยเฉพาะอย่างยิ่งที่จะพบเห็น ยาก ธาตุ)
ได้เป็นสิ่งสำคัญสิ่งที่เรียกว่าปัญหาไว้สำนักงาน เพราะการเรียนรู้ได้โดยตรง มีผลกระทบต่อผู้อยู่อาศัย ผู้ใช้บริการ ทำเนื่องจากลักษณะบ้าน และโครงสร้างของตัวการบ้าน และสิ่งแวดล้อมภายนอกของบ้านที่ปรากฏเห็น

ตั้งนี้จึงจำเป็นที่จะต้องมีการศึกษาวิเคราะห์ความชื้นของอาคารภายในบ้านแย่ โดยมีการศึกษาเกี่ยวกับปัญหาดังนี้

1.1 ปัญหาด้านความชื้นในอาคาร

ปัญหาเต็มที่ที่มีผลกระทบต่ออาคาร คือ ความชื้น (Dampness) ความชื้นนี้ทำให้ชื้นสัมพันธ์ของอาคารชั้นที่ล่างและ
เพิ่มขึ้น เนื่องจากไม่ได้เป็นการเปลี่ยนแปลง อุณหภูมิในเนื้อผ้ารุ้ง ซึ่งมีการเป็นการเปลี่ยน
หรือความชื้นในพื้นที่ที่สุด

ความชื้นในปัญหาสิ่งที่มองไม่เห็นและที่เกิดขึ้นได้จากเพราะเป็นความร้อนแล้ว โดยมีการควบคุมของความชื้นของ
โครงสร้างตัวอาคาร ความเข้มข้นจากแหล่งที่มีการต่างๆทำให้เกิดปัญหาดังนี้

- การยืดหยุ่นแบบที่มีอิทธิพลของความชื้นต่างๆ ของอุณหภูมิระดับชั้นอาคาร ทำให้โครงสร้างต่างๆ ที่เป็นโลหะ,
- เส้นทางของเครื่องปรับอากาศ, ฐานของตัวอาคาร
- การเปลี่ยนแปลงของความชื้น ตามความชื้น ชั้น, และอัตราการปรับอากาศ
- การลดการหลุดของตัวอาคาร
- การเปลี่ยนแปลงของตัวอาคาร (การแกน, ใบ, ตรง, การยืดหยุ่น) ซึ่งเป็นสาเหตุที่ทำให้เกิดการสามารถวัดได้

โครงสร้างเสียหายก็ที่เป็นต้น

- การเรียนรู้ในระดับที่มีชีวิตทางบริการ รวมไปถึงรูป, คิวส์, ใหญ่ เป็นต้น

ปัญหาเกี่ยวกับความชื้นขึ้นเกิดขึ้นเป็นสิ่ง จำเป็นที่จะต้องมีการแก้ไขอย่างน้อย 4 สาเหตุดังนี้

- แหล่งความชื้น
- เส้นทางสัมพันธ์ของความชื้น
- แบ่งเป็นการลดการที่ความชื้น
- อุปกรณ์ที่ถูก ที่ให้ความเสี่ยงจากความชื้น

การก่อสร้างจะได้เลือกปัญหาดังนี้ ซึ่งในกรณีที่เป็นจริงแล้ว
การตรวจสอบความชื้นในเนื้อผ้าไม่ราบรื่น ในการจะสร้างอาคารแห่งนี้ที่มีความสมบูรณ์ หรือการที่จะก่อสร้างขึ้นการเลือกที่ของ
ความชื้น นอกจากจะไม่ได้มีความเป็นไปได้เลย ถึงที่จะมีอยู่ไม่เป็นการประสบการณ์ดังนั้น จึงควรที่จะการเลือกจากความชื้น ดังนั้น
ทางที่จะเป็นไปได้มากที่สุดคือ การรวมความชื้นกลืนความรบกวนที่ในสิ่งมีชีวิตทางบริการที่เป็นการลดความเป็นไปได้ของปัญหาที่จะเกิดขึ้น ดังนั้น
การควบคุมและการจัดการที่ความชื้น และลดความเสี่ยงของปัญหาเกิดจากความชื้น จะต้องมีการออกแบบที่เหมาะสม มีการ
เลือกชิ้นงานของวัสดุต่างๆ ที่เป็นอุปกรณ์เรียบที่สำคัญ สำหรับการออกแบบ และการออกแบบโครงสร้างของอาคารด้วย
1.2 ปัญหาที่เกิดขึ้นและสาเหตุในการเลือกแนวความร่วมกันการศึกษา

(1) ปัญหาของการแก้ไข ระบบโครงสร้างและการระบบที่ใช้ในทางการพยากรณ์ไม่มีการออกแบบให้ใช้ร่วมกันทำให้เกิดความรุนแรงและความช้าซ้่อมที่ส่งผลกระทบต่อสิ่งแวดล้อมที่ไม่ได้รับการควบคุมหรืออยู่ในสถานะการณ์ไม่เหมาะสม ทำให้เกิดการส่งผลกระทบต่อสิ่งแวดล้อมอย่างรุนแรง มีการระบายอากาศไม่ผ่านไปผ่านผนัง ทำให้เกิดการระบายอากาศไม่ผ่านไปผ่านผนัง ทำให้เกิดการระบายอากาศไม่ผ่านไปผ่านผนанг

(2) ระบบการออกแบบทางสถานต่อรบพร้อมที่สื่อสารหรือไม่ได้ติดต่อกันในระบบอากาศที่ไม่ได้ผ่าน เนื่องจากไม่ได้รับแสง โดยคำนวณทางการณ์ของแสงและระบบที่ออกแบบในการของอากาศเป็นไปตามที่คาดหวังและถูกต้องทำให้ไม่สามารถนำผลมาใช้ประโยชน์ได้ที่ที่ควร ดังแสดงในภาพที่แล้ว

(3) จากการติดต่อกับแบบอย่างต่างๆมีการพยากรณ์อากาศที่เกิดขึ้นในระบบอากาศไม่เป็นไปตามที่คาดหวังและถูกต้องทำให้ไม่สามารถนำผลมาใช้ประโยชน์ได้ที่ที่ควร จึงทำให้เกิดความผิดพลาดเกิดขึ้น

(4) หลุดจากสภาวะที่บริเวณที่มีการระบายอากาศไม่ได้ผ่านไปผ่านผนังและเกิดการรักษาอากาศที่เกิดขึ้นเท่าที่ควร จึงทำให้เกิดความรุนแรงเกิดขึ้นและเกิดสิ่งผิด

1.3 วัตถุประสงค์ของการศึกษา

(1) เพื่อศึกษาความเป็นไปได้ในการทดลองและการเพิ่มความชัดของอากาศภายในบ้านภายใน

(2) เพื่อศึกษาความชัดของอากาศภายในบ้านภายในเกิดขึ้นในสภาวะที่คุณสมบัติอากาศภายในบ้านภายในอยู่ภายในที่มีผลต่อความ

(3) เพื่อศึกษาระบบในการควบคุมความชัดของอากาศภายในบ้านภายในในรูปแบบของระบบ PASSIVE และระบบ ACTIVE
2. การดำเนินงานวิจัย

2.1 กิจการที่ได้รับการเตรียมและสภาพแวดล้อม

ที่สถานีการ อาคารบ้านแฝดและบ้านสุขภาพ ตั้งอยู่ที่บริเวณถนนเรือนเศรษฐี รูปแบบอาคารเป็นสิ่งปลูกสร้างที่มีความกว้าง 15.46 x 4.50 m. แนวอาคารทางข้างในแผนก กิจการ – กิจการ เป็นรูปแบบอาคารเป็นบ้านแฝดติดกันเรื่อยหน้า โดยจะเริ่มช่วงอาคารที่ 8 หลัง สั่ง 1 ชั้น ดูอากาศ โดยทางกิจการจะทำการบันทึกเวลาบ้านแฝด 2 ซึ่ง กรีฑาได้ทำสัญญาด้านหลัง บ้านแฝด 3 ซึ่ง กรีฑาจะรับรู้และจัดการด้วยกันกับบ้านแฝดสรุปข้อกัน จากกิจการทางการวิเคราะห์ในรูปแบบนี้ จะทำให้ได้พื้นฐานของการวิเคราะห์ได้ทงหมดทั้ง และมีส่วนได้สิ่งที่ทำให้ได้รับความรู้สนับสนุนอย่างทั่วถึงเป็นทางกิจการโดยใช้เป็นทางเข้าหลัก สำหรับกรีฑาได้รับความรู้และสภาวะในอาคารภายในจากมีระยะเวลาการวิเคราะห์ไม่เพียงพอที่จะกระบวนการใดๆ แต่ก็จะได้รับแนวทางว้านและหลักที่ติดกันทางกรีฑา

2.2 ขั้นตอนในการดำเนินงานวิจัย

จากการศึกษาในฐานะและงานวิจัยที่เกี่ยวข้องได้ทำการออกแบบการทดลองเพื่อศึกษาความเป็นไปได้ในการลดความซับซ้อน
ในอาคาร โดยการทดลองต่างๆ ที่มีผลในการควบคุมความซับซ้อน โดยมีผลการในการทดลองวิเคราะห์ คือ

(1) ทดสอบภาคอิสระในการทำความซับซ้อนของอาคารและอาคารใหม่ ณ สถานีแห่งต้น 10 จุดที่กำหนดไว้
ที่ก่อนการทำงานและการทดลอง เพื่อใช้ในการเปรียบเทียบว่าค่าความซับซ้อนที่ทดลอง

(2) ทดลองประสิทธิภาพในการลดความซับซ้อนโดยพิจารณาจากผลการทดลองที่ได้จากการวิเคราะห์และช่วงเวลา
โดยนำผลการทดลอง (ค่าทุนอุปกรณ์ที่มีประโยชน์ ค่าความซับซ้อนพื้นที่) มาใช้ในการวิเคราะห์โดยเปรียบเทียบ
เพื่อคำนวณค่าความซับซ้อนของอาคารที่ทดลอง

(3) เปรียบเทียบประสิทธิภาพในการลดความซับซ้อนในแต่ละกรณีที่ต้องการของขอบเขตภายในและภูมิทัศน์
เพื่อเป็นแนวทางและนำไปปรับปรุงใช้
แผนผังชั้นที่ 1 และลักษณะในการวัด

แผนผังชั้นที่ 2 และลักษณะในการวัด

แผนผังชั้นที่ 3 และลักษณะในการวัด

รูปล่างที่ 1 รูปติดทางด้านเล็ก

รูปล่างที่ 2 รูปติดทางด้านใต้

รูปด้านที่ 1 รูปติดทางด้านหน้า

รูปด้านที่ 2 รูปติดทางด้านข้าง
2.3 วัสดุอุปกรณ์
(1) เครื่องบันทึกอุณหภูมิและความชื้น (opus 200)
(2) เครื่องวัดอุณหภูมิและความชื้น ที่ใช้ติดกับถังเรือนบันทึก (universal use)
(3) เครื่องวัดอุณหภูมิและความชื้น ใช้ในการวัดความชุ่มชื้น (humidity meter)
(4) เครื่องวัดความเร็วลม (anemometer)
(5) พัดลมถอดอากาศ (cartridge exhaust fan) รุ่น HB-VW20M3(N) ขนาดใบพัด 8 นิ้ว
(6) สารพัดความชื้น eco dry (eco dry desiccant)

2.4 วิธีการทดลอง

จากการศึกษาทฤษฎีและฝึกหัดที่มีเนื้อหาใกล้เคียงกัน จึงได้กำหนดให้มีการทดลอง 3 รูปแบบ โดยรูปแบบแรกไม่มีการ
เริ่มในกระบวนการควบคุมความชื้น สำหรับในเรื่องการควบคุมความชื้น จึงมีการควบคุมอากาศที่ความรีวม 0.6 m/s,
2.4 m/s และ สารพัดความชื้น Eco Dry ขนาด 1 Kg, 2 Kg เพื่อเปรียบเทียบประสิทธิภาพในแต่ละการทดลองกับความชื้น
ภายนอกห้องแล้ว

(1) ทำการเสวนาจุดขนาดของพื้นผิว เพื่อให้ทราบเกี่ยวกับแผ่นพื้นผิวและปริมาตรของสิ่งต่างๆ ในส่วนที่จะทำการทดลองแล้ว
น้ำหนักเมื่อเพื่อจะได้กำหนดคำนวณที่จะใช้ในการวัดและบันทึกผลการทดลอง โดยกำหนดระบบการทำงานเป็น 3
ระบบต่อไปนี้

การทดลองที่ 1 ที่ความรีวม ไม่มีการควบคุมความชื้น เพื่อเป็นแบบจำลองแอบเร็วที่จะเริ่มประยุกต์ใช้ในการทดลอง
กับการทดลองแบบนี้

การทดลองที่ 2 การระบบอากาศ (Ventilation) เพื่อให้ความชื้นไม่เกินส่วนต่าง โดยการทดลองกำหนดความเร็วลม 2 ระดับ
ถึง ที่ความรีวม 0.6 m/s และ 2.4 m/s (ที่ความรีวม 10 cm.จากพัดลม) เพื่อเปรียบเทียบประสิทธิภาพในการทำลายความชื้น
โดยเริ่มจากการทดลองที่ 1

การทดลองที่ 3 สารพัดความชื้น (Desiccant) เพื่อพื้นที่ความชื้นในอากาศ โดยการทดลองเลือกใช้สารพัดความชื้น
Eco Dry ขนาด 1 Kg และ 2 Kg เพื่อเปรียบเทียบประสิทธิภาพในการทำลายความชื้น โดยเริ่มจากผลการทดลองที่ 1 จากนั้น
น้ำหนักให้จากการทดลองที่ 2 แล้วเพิ่มเติมเพื่อเปรียบเทียบประสิทธิภาพในการทำลายความชื้น

(2) จัดตั้งอุปกรณ์เพื่อวัดอุณหภูมิ ความชื้น และจัดความเร็วลมในทั้ง 9 จุดที่กำหนดไว้พัดลมถอดอากาศ (cartridge exhaust fan) โดย ระบบที่มีการควบคุม 100% และ 50% ระบบแบบ Full Protection
ให้ความเร็วลมมากกว่าพัดลมเป็นประมาณ 220/50 (ไวด์ชีฟชีฟ) กำลังไฟฟ้า 35 วัตต์ กระแสไฟฟ้า 0.16 แอมป์
ความเร็วลม 1340 รอบ/นาที ถึงความเร็วลม 6.00 คิว.ม.ต่อส่วน

(3) วัดอุณหภูมิและความชื้นแล้วทำการทดลองเป็นขั้นตอนที่กำหนดไว้ใช้จุดตั้งตามที่ระบุ 1.2 มตร.
โดยทำการบันทึกผลการทดลองทุกๆ 1 ชั่วโมง โดยเริ่มการบันทึกตั้งแต่เวลา 0.00 - 23.00 น. ที่ภายนอกและภายในห้อง 9
จุดที่กำหนดไว้ยังประมาณ

(4) ทำการตรวจสอบความถูกต้องของการทดลองในระบบต่างๆ แล้วทำการอุณหภูมิและความชื้นที่ภายนอกและภายในห้อง
9 จุดที่กำหนดไว้ของบันทึกแล้ว แล้วทำการบันทึกผลการทดลองทุกๆ 1 ชั่วโมง โดยเริ่มการบันทึกตั้งแต่เวลา 0.00 - 23.00 น.
เพื่อให้ข้อมูลมาควรที่ควรควบคุม การส่งผ่านความชื้นประสิทธิภาพในการทำลายความชื้นของไหลเต็มระบบและในแต่ละช่วงเวลา

(5) ในการทดลองระบบราคาจะเริ่มที่การแสดงผลที่ความรีวม 0.6 m/s แล้วทำการบันทึกผลการทดลองทุกๆ
1 ชั่วโมงต่อเวลา 24 ชั่วโมงแล้วจึงเพิ่มความรีวมเป็น 2.4 m/s จึงทำการบันทึกผลเป็นการทดลองที่ความรีวม 0.6 m/s
และในการทดลองสารพัดความชื้น; Eco Dry ขนาด 1 Kg ก็ทำการบันทึกผลการทดลองทุกๆ 1 ชั่วโมงต่อเวลา 24
ชั่วโมงแล้วจึงเพิ่มความชื้น; Eco Dry เป็นชนิด 2 Kg จึงทำการบันทึกผลเป็นการทดลองที่ความชื้น 1 Kg

(6) ผลการวิเคราะห์ของแต่ละระบบการทำความชื้นและเปรียบเทียบชี้วัดและข้อดี โดยทำการแยกแนวทาง
ในการเริ่มประยุกต์ใช้สำหรับการต้องจัดการควบคุมความชื้น และพื้นที่ประสิทธิภาพในการใช้งาน

Vol. 9 24
จากการศึกษาการควบคุมความชื้น สามารถคำนวณปริมาณการใช้สารละลายความชื้นได้เหมาะสมกับขนาดของห้องหรือใช้งานดังนี้

\[W = R \times A \times M \]

\[W = \text{น้ำหนักสารละลายความชื้นที่ต้องใช้} \]
\[R = \text{ความชื้นในอากาศ \% ค่าที่แทนได้รับสารละลายความชื้น} > 80\% \text{ Rh ต้องถูก} 2 \]
\[\text{ความชื้นในอากาศ \% ค่าที่แทนได้รับสารละลายความชื้น} < 80\% \text{ Rh ต้องถูก} 1 \]
\[A = \text{พื้นที่ภายในของห้อง} \]
\[M = \text{ระยะเวลาที่ต้องควบคุมความชื้น} \]

3. ผลการวิจัยและการวิเคราะห์
3.1 การแสดงผลของอุณหภูมิและความชื้นก่อนทำการทดลอง

จากการตรวจสอบอุณหภูมิและความชื้นก่อนทำการทดลอง เพื่อที่จะนำมาเป็นข้อมูลหลักในการหาประสิทธิภาพของการคืนกลไกการควบคุมความชื้นในอากาศไม่สามารถควบคุมได้ไม่ว่าจะเป็นวิธีใดๆ ที่มีการควบคุมความชื้นโดยใช้เครื่อง้งด etco dry ที่สามารถควบคุมความชื้นได้มากกว่าตัวอุปกรณ์ที่มีข้อมูลและความเชื่อถือได้กว่าเครื่องเรียกปิดเป็นเครื่องที่ผลิตจากบริษัท 100% ไม่ทำลายสิ่งแวดล้อม

การทดลองชุดที่ 1: การควบคุมอุณหภูมิและความชื้นในอากาศไม่สามารถควบคุมได้ไม่ว่าจะเป็นวิธีใดๆ ที่มีการควบคุมความชื้นในอากาศไม่สามารถควบคุมได้ไม่ว่าจะเป็นวิธีใดๆ ที่มีการควบคุมความชื้นในอากาศไม่สามารถควบคุมได้ไม่ว่าจะเป็นวิธีใดๆ ที่มีการควบคุมความชื้นในอากาศไม่สามารถควบคุมได้ไม่ว่าจะเป็นวิธีใดๆ ที่มีการควบคุมความชื้นในอากาศไม่สามารถควบคุมได้ไม่ว่าจะเป็นวิธีใดๆ ที่มีการควบคุมความชื้นในอากาศไม่สามารถควบคุมได้ไม่ว่าจะเป็นวิธีใดๆ ที่มีการควบคุมความชื้นในอากาศไม่สามารถควบคุมได้ไม่ว่าจะเป็นวิธีใดๆ ที่มีการควบคุมความชื้นในอากาศไม่สามารถควบคุมได้ไม่ว่าจะเป็นวิธีใดๆ ที่มีการควบคุมความชื้นในอากาศไม่สามารถควบคุมได้ไม่ว่าจะเป็นวิธีใดๆ ที่มีการควบคุมความชื้

![Graph showing temperature and humidity control results](image)

รูปที่ 1 การควบคุมอุณหภูมิและความชื้นก่อนทำการทดลอง วันที่ 14 ก.พ. 52
จากการแสดงถึงความสัมพันธ์ของอุณหภูมิกับความชื้นในอากาศ โดยความชื้นจะมีค่าสูงขึ้นเมื่ออุณหภูมิมีค่าลดลง
หรือเป็นช่วงเย็น หรือต่ำกว่าค่ำกึ่งหนึ่งหน้าที่ว่าความชื้นมีการเปลี่ยนแปลงกับอุณหภูมิ คืออุณหภูมิสูงความชื้นจะต่ำ
และอุณหภูมิต่ำความชื้นจะสูง และจากที่ได้จะเห็นได้ว่าการวิเคราะห์ความชื้นที่มีผลต่อการทดลอง

3.2 การแสดงของอุณหภูมิและความชื้นของการทดลองในระยะเวลาที่ความเร็วลม 0.6 m/s
จากรูปแสดงถึงการแบบอ่างที่ใช้หัวมีในการพยายามหาความชื้นของการทดลองเพื่อให้ความชื้นออกจากการทดลอง
ทำให้มีผลการทดลองเพื่อที่จะนำมาเปรียบเทียบกับอุณหภูมิปัจจุบัน

ภาพผลการทดลองสูตรที่ 2 การระบบท่าอากาศที่ความเร็วลม 0.6 m/s
ลักษณะของการทดลองของสูตรที่ 2 พบว่า การพยากรณ์ที่อุณหภูมิจะลดลงอย่างต่อเนื่อง ลักษณะของการพยา
豸ความไหลข้างหน้าไม่ค่อยเกิดความแตกต่างมากมักก้าวความชื้นใน幾個และรายละเอียดผลการทดลองแสดงในรูปแบบของ
กราฟสีน้ำเงิน ได้ดังนี้

รูปที่ 2 กราฟอุณหภูมิและความชื้นของการทดลองในระยะเวลาที่ความเร็ว 0.6 m/s วันที่ 15 ก.พ. 52

จากการทดสอบอุณหภูมิและความชื้นในวันที่ 15 ก.พ. 52 ที่กำหนดไว้ก่อนกับทฤษฎีอุณหภูมิและความชื้น
ภายในบ้าน แล้วได้รับอุณหภูมิทรงความชื้นที่ภายในบ้านจะมีค่าสูงกว่ากับปรับปรุงความชื้นในบ้านแล้ว
และจากการทดลอง ภายในบ้านที่ความเร็วลม 0.6 m/s ปรับปรุงได้ระดับปานกลาง หรือการสูญเสียความชื้นสูงมากในไม่กี่วันๆ จึงทำให้
ความชื้นน้อยต่อที่ทดลอง แต่เป็นเหตุการควบคุมอุณหภูมิและความชื้นในบ้านกับสภาพอากาศภายนอกปานกลางมากกว่า

3.3 การแสดงของอุณหภูมิและความชื้นของการทดลองในระยะเวลาที่ความเร็วลม 2.4 m/s
เมื่อเทียบเท่ากันของผลการทดลองในระยะเวลาที่ความเร็วลม 0.6 m/s เราจะเห็นการเปลี่ยนแปลงของความชื้น
ภายในบ้าน ได้เป็นระดับที่ต่างกันของความชื้นในไม่กี่วันๆ แต่เมื่อเวลาที่มีการสูญเสียความชื้น
จากการทดลองที่ความเร็ว 2.4 m/s

ภาพผลการทดลองสูตรที่ 3 การระบบท่าอากาศที่ความเร็วลม 2.4 m/s
ลักษณะของการทดลองของสูตรที่ 3 พบว่ากราฟไม่มีความชื้นน้อยมาก ความชื้นต่ำผ่านดังกล่าวอย่างต่อเนื่อง และเร็ม
ลงที่หลังจากเวลา 22.00 – 12.00 โดยประมาณ แต่ความชื้นในกิจวัตรไม่ต่ำต่อตลอดจากความชื้นในสภาพลมภายนอก

Vol. 9
รูปที่ 3 การพบอุณหภูมิและความชื้นของการทดสอบการระบบอากาศที่ความเร็วลม 2.4 m/s วันที่ 16 ก.พ. 52
ผลลัพธ์ของอุณหภูมิและความชื้นของการทดสอบพบว่าผลของการทดสอบที่ความเร็วลม 0.6 m/s และการระบบอากาศที่ความเร็วลม 2.4 m/s ไม่ได้มีผลต่อการลดความชื้นได้ถึง 1 เท่าของความเร็วลมที่เพิ่มขึ้นแต่เป็นการเปลี่ยนอากาศที่ไม่มีความสัมพันธ์กับสภาพอากาศสามารถบังคับได้ไม่ได้เร็วขึ้นกว่าการระบบอากาศที่ความเร็วลม 0.6 m/s เทียบเท่ากัน ซึ่งสามารถสรุปได้จากผล
ผลลัพธ์ของ 2 การทดสอบได้ทั้งกล่าว

3.4 การแสดงผลของอุณหภูมิและความชื้นของการทดสอบการใช้สารดูดความชื้น Eco Dry 1 Kg.
การหาประสิทธิภาพของสารดูดความชื้น Eco Dry 1 Kg. เพื่อที่จะนำมาเป็นข้อมูลในการเปลี่ยนแปลงที่ดีขึ้นในการลดความชื้นด้วยการระบบอากาศและความดันสูงในการใช้เพลิงงาน

ภาพผลการทดสอบที่ 4 การใช้สารดูดความชื้น ECO BEAD 1 kg
ลักษณะของการทดสอบการทดสอบที่ 4 พบว่าภาพส่วนใหญ่มีความชื้นแสดงถึงความชื้นเพียงorporably สามารถที่จะลดความชื้นไปได้เมื่อกลับกลับได้ แต่การเปลี่ยนการบ่งชี้ว่าช่วงเวลา 4.00 – 10.00 อาจจะเนื่องจากสารดูดความชื้นแสดงอย่างชัดเจน ซึ่งทำให้ได้ผลไม่ถูกต้องทั้งหมด แต่หลังจากเวลา 15.00 – 24.00 ความชื้นลดลงไปได้เยอะหรือพอ
ผลลัพธ์จากการวิเคราะห์คือไม่มีผลต่อการออกข้าง
จากการทดลองประยศภาพในภาวะดุลีคว่ำตัวสารดูดความขึ้น Eco Dry 1 Kg. จะพบประสิทธิภาพที่สามารถลดความขึ้นได้ แม้ว่าตัวการจะพ่วงว่าความขึ้นอยู่ในนาทีแรกจะทำให้ความขึ้นลดลงน้อยไป แต่ประสิทธิภาพในการดูดความขึ้นของ Eco Dry ก็ยังอยู่ตัวอยู่และจะลดการดูดความขึ้นออกจากระดับ และทำให้การดูดความขึ้นเข้าไปดีขึ้นมาก แต่การดูดความขึ้นของสารดูดความขึ้นก็ยังไม่ได้ทำมากกว่าความขึ้นในภายหลังนั้น

3.5 การแสดงผลของอุณหภูมิและความชื้นของการทดลองการใช้สารดูดความขึ้น Eco Dry 2 Kg.

เพิ่มปริมาณของสารดูดความขึ้น Eco Dry จาก 1 Kg. เป็น 2 Kg., เพื่อเปรียบเทียบประสิทธิภาพในการดูดความขึ้น ต่อปริมาณของสารดูดความขึ้นเพื่อเปรียบเทียบผลของการลดลงและความคุ้มค่าการลดลงของชุดที่ 5 การใช้สารดูดความขึ้น ECO BEAD 2 kg

ผลการทดลองชุดที่ 5 นับว่าการมีความชื้นมากในช่วงแรกที่ 0.00 – 5.00 น. โดยประมาณ หลังจากนั้นความชื้นในอากาศจะค่อย ๆ เพิ่มขึ้นและเริ่มที่จะคงที่ แต่กำลังก้านความชื้นอยู่แล้วก็จะคงลดลงได้และ

ทั้งในรูปที่ 5 การแสดงผลอุณหภูมิและความชื้นของการทดลองการใช้สารดูดความขึ้น Eco Dry 2 Kg. ที่วันที่ 18 ก.พ. 52

จากการทดลองพบว่าผลดังกล่าวของอุณหภูมิและความชื้นของการดูดความขึ้น prognostic และความชื้นภายในมีความแตกต่างกันมาก การทดลองการใช้สารดูดความขึ้น Eco Dry 2 Kg. จะสามารถลดความขึ้นได้ดีกว่าสารดูดความขึ้น Eco Dry 1 Kg. แต่ก็ไม่ได้ผลที่ดีกว่ากันเนื่องจาก 1 มาตรฐานน้ำมันกีของสารดูดความขึ้นแต่จะเป็นไปในทางการดูดความขึ้นของสารดูดความขึ้นก็ตาม

4. สรุป

ผลการทดลองนี้พบว่าการควบคุมการเปิดการถ่ายอากาศในช่วงจุดที่ไม่ใช่กักจุลินทรีย์เนื่องจากการจะลดความเร็วของ 0.6 m/s หรือ 2.4 m/s ก็ตามจะเป็นผลดีในการควบคุมความขึ้นภายในอากาศได้ทำให้ความชื้นภายในอากาศส่วนการทดลองลดลงของสารดูดความขึ้น Eco Dry สามารถลดความขึ้นได้ดีกว่าจริงๆ และมีประสิทธิภาพ แต่ซับซ้อนกันในเรื่องของความชื้นที่ในการดูดความขึ้นจึงจะหมดประสิทธิภาพ จะเริ่มหรือช้าขึ้นเมื่อกับความชื้นในอากาศจะมีมากน้อยเพียงใดตัวจะเข้ากัน

Vol. 9
5. ข้อเสนอแนะ

ในการออกแบบและตกแต่งที่ต้องมีผู้ที่ใช้งานอยู่เสมอ ๆ ก็ควรคัดเลือกการใช้งานของผู้ใช้งานเป็นลำดับชั้นในการศึกษาวาระนี้ ที่มีที่ใช้เยอะ ให้เลือกจากสิ่งที่ผู้ใช้งานต้องการที่เรารับเร็วในการใช้งาน ก่อนจะมีการใช้ชั่วคราวเช่นความมั่นคงอยู่ในพื้นที่ใช้งาน ลักษณะการใช้ของผู้ที่ใช้วัสดุที่มา time lag ไม่เหมาะสม เนื่องจากวัสดุที่มีค่า time lag มากจะมีขณะผ่านช่วงเวลานี้กลางวันไว้จะเปลี่ยนหรือจะใช้งานอยู่ที่ไม่สามารถบังคับที่จะที่จะเรียกว่าจุดอ่อน และระยะทางที่ที่จะต้องมีความต้องการจะมีกว่าปัจจุบัน เพื่อให้เกิดการใช้งานของผลกระทบจากอากาศจะช่วยให้เกิดการระบบอากาศที่เป็นอย่างชั่น

6. อุปสรรคและแนวทางในการศึกษาขั้นต่อไป

(1) การเก็บข้อมูลในสภาพห้องเรียนที่จริงทุกกลุ่มในแต่ละเดือน ซึ่งมีตัวแทนของดวงอาทิตย์ สถานภาพอากาศ และความชื้นที่แตกต่างกัน ข้อมูลที่ได้มีความควบคุมที่มีขั้นตอนเพื่อเก็บความจริง สามารถนำไปประยุกต์ใช้งานได้

(2) ควรศึกษาปัจจัยทางกายภาพอื่น ๆ ที่มีส่วนต่อเนื่องกันอยู่ท้องที่จากผลกระทบ เนื่องจากมีระยะทางจำกัด ทำให้ผู้เรียนไม่สามารถทดสอบวิธีการลดความชื้นตามทฤษฎีได้ก็จึงทำได้

(3) ควรศึกษาวิธีการใช้งานวิธีการลดความชื้นในชั่ววันชีวิตต่าง ๆ ที่เหมาะสมจากกิจวัตรใดก็ตามไม่ได้ทำให้ retract

(4) ควรหลากหลายในทางการทำความคิดในการแก้ไขปัญหาที่เกิดขึ้นในเรื่องอุปกรณ์ที่ใช้ร่วมกันที่ humidity meter ซึ่งทำให้ ต้องวิเคราะห์ผลกระทบต่าง ๆ ต้องให้เหมาะสมในทางการกระทำผ่าน การวัดที่อุณหภูมิและ ความชื้นปัจจุบัน ควรใช้เครื่องวัดที่สามารถกระทบรวม ๆ กันทุก ๆ จุด

(5) อุปกรณ์ที่มีแหล่งที่มีผลต่อความชื้นภายในเป็นอีกหนึ่งตัวแปรที่ไม่สามารถควบคุมได้โดยชั่วจุดที่เก็บสภาพอากาศ และคุณภาพที่ผ่านผ่านกลางวันหรือจะทำให้ไม่ทราบต่อความชื้นที่ได้รับอิทธิพลจากอันจะเป็นไป

กิจกรรมประยุกต์

กิจกรรมการเก็บข้อมูลวันที่ต้องดูอย่างต่อเนื่อง ด้วยการนำผู้ที่มีประสิทธิภาพในการควบคุมความชื้นจากการ ศึกษาวิชาการ วิทยาศาสตร์ ซึ่งเป็นอาจารย์ที่ปรึกษาการวิทยาชีวินิพนธ์ ผู้รู้จักศักยภาพในความอนุรักษ์จากผู้อื่นและมีทรัพยากรช่วยอย่างดุล

จะมีระบบควบคุม ศาสตร์ ศึกษา ในการศึกษาแบบรวมกลุ่ม ที่ช่วยแสงแก่การและการกระทำผ่านการจุดที่ ผู้รู้จักบูรณาการอย่างที่มีความรู้สึกในการเรียนไปในที่นี้ที่ได้

จะมีระบบควบคุม ศาสตร์ ศึกษา ในการศึกษาแบบรวมกลุ่ม ที่ช่วยแสงแก่การและการกระทำผ่านการจุดที่ ผู้รู้จักบูรณาการอย่างที่มีความรู้สึกในการเรียนไปในที่นี้ที่ได้
เอกสารอ้างอิง

[1] ดร. จารุต วงศ์สมบูรณ์, "การออกแบบสถาปัตยกรรมเมืองร้อยในประเทศไทย", คณะสถาปัตยกรรมศาสตร์ มหาวิทยาลัย.exist พระนคร 2514

[2] รัชดา แก้วสว่างวงศ์ "หัวข้อวิทยานิพนธ์ การศึกษาในการออกแบบขั้นตอนการออกแบบอาคาร" วิทยานิพนธ์สถาปัตยกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง 2550

[6] มาลีนี ศรีสุวรรณ, "การศึกษาความจำเป็นของกิจการท้องถิ่นเกี่ยวกับการนำงบประมาณให้สู่การสำรองทรัพยากรในประเทศ", คณะสถาปัตยกรรมศาสตร์ มหาวิทยาลัยอัสสัมชัญ 2540

[7] มะลิรา เหนือบุตร, "สร้างสภาวะอากาศสามารถ", มหาวิทยาลัยกษัตริย์บรมราชาภิเษก

ประวัติผู้เขียน

ชื่อ-นามสกุล

การศึกษาระดับปริญญาตรี

การศึกษาระดับปริญญาโท

หมายเหตุ:

E-mail address

Citation

No.

Vol 9

30