Pharmaceutical Biotechnology Products เพื่อใช้ในการแพทย์

หลักการพื้นฐานในการประเมิน

เครื่องมือและวิธีวินิจฉัย

เนื่องจากในปัจจุบันเทคโนโลยีในการผลิตยาได้เปลี่ยนแปลงไปจากเดิมอย่างมาก มีย้าวความหลากหลายขึ้นโดยใช้เทคโนโลยีพันธุวิศวกรรม (recombinant DNA technology และ cell culture) เช่น tissue plasminogen activator, hepatitis B vaccine, monoclonal antibodies ซึ่งยากทำให้เป็นผลลัพธ์โดยตรงจากธรรมชาติ และมีขึ้นตอนต่างๆ มากมายในกระบวนการผลิต ซึ่งอาจเป็นอันตรายต่อผู้บริโภคหากไม่มีการควบคุมความชุ่มชื้นและประเมินประสิทธิภาพอย่างถูกต้อง ในประเทศสหรัฐอเมริกามีที่มีบทบาทโดยตรงในการควบคุมผลิตภัณฑ์เหล่านี้คือ Food and Drug Administration (FDA) ได้ตั้งคณะกรรมการ International Conference on Harmonisation of Technical Requirements for Human Use (ICH) ซึ่งเพื่อศึกษาและจัดทำแนวคิดในการควบคุมคุณภาพที่ชื่อว่า "Q6B Specifications" ซึ่งในปี 1998 โดยมีความรวมถึงมีกับสถาบันต่างๆ ในอธิบดีภูมิภาคคือ สภาพภูมิปัญญาและ ปุ๋ยในเพื่อหาแนวทางปฏิบัติที่เป็นผลลัพธ์สำหรับประเมินประสิทธิภาพของยาที่ผลิตขึ้นโดยใช้เทคโนโลยีพันธุวิศวกรรม โดยเฉพาะผลิตภัณฑ์ที่เป็น recombinant protein แตกอกกำหนดมาตรฐานไม่ได้ควบคุมถึงสารเคมีกลุ่ม antibiotics, synthetic peptide/polypeptides, heparins, vitamins, cells metabolites, DNA products, allergenic extracts, conventional vaccines, whole blood และ cellular blood components ในที่นี้จะเข้าดังอิงหนังสือร่างแนวทางฉบับที่เบื้องต้นจากมีความทันสมัยมากที่สุด

คุณสมบัติเฉพาะตัว (Characteristic and Specification)

ชีววัตถุยี่พื้นฐานที่ผลิตขึ้นโดยใช้เทคโนโลยีชีวภาพ (biotechnological product) มีคุณสมบัติเฉพาะตัวที่สำคัญที่ใช้ในการกำหนดถึงประสิทธิภาพ และความเป็นพิษ คือ physicochemical properties, biological activities, immunochemical properties, purity, และ impurities คุณสมบัติเฉพาะตัวเหล่านี้ต้องถูกนำมาพิจารณาเป็นข้อมูลในการตัดสินใจได้ใช้กับมุ่งหมายได้อย่างมีประสิทธิภาพ (efficacy) และปลอดภัย (safety) ข้อกำหนดทั่วๆ เหล่านี้จะถูกนำมาประเมินร่วมกับข้อมูลพื้นฐานที่ได้จากการวิจัยที่มีความคงที่ (consistency) และความคงทน (stability) เเพียงใด

* ภาควิชานมัยศูนย์วิทยาศาสตร์ คณะวิทยาศาสตร์ มหาราชวิทยาลัยธัญบุรี
1. Physicochemical properties

Physicochemical properties refer to the physical and chemical characteristics of a substance or material, such as its properties in solution (composition), its structure (primary structure, secondary, tertiary, and quaternary structure), and its behavior in various environments (biological activity).

Amino acid composition is an important aspect of the characterization of proteins. Hydrolysis and analytical procedures can be used to determine the amino acid composition.

Terminal amino acid sequence can be determined through peptide mapping.

1.1. Protein Structure and Function (Physicochemical Characterization)

- Amino acid sequence analysis

- Carbohydrate structure

Sulphydryl group(s) and disulfide bridges are also important in protein structure and function.
ของ carbohydrate chains เป็นอีกคุณสมบัติ
เฉพาะตัวที่มีความสำคัญในการตรวจสอบของโครง
ร่างที่เรียกได้ว่า
ว. Physicochemical properties
- Molecular weight/size การ
ตรวจสอบนั้นทำให้ในกลุ่มสามารถทำได้โดยใช้เทคนิค
size exclusion chromatography, SDS-polyacryl-
lamide gel electrophoresis, mass spectrophotometry
- Isoform pattern เพื่อจาก
polypeptide chain ที่มีลักษณะถาวรในจับเฉพาะ
อาของ isofrom ซึ่งเกิดจาก carbohydrate chains
ที่แตกต่างกันได้ ซึ่งสามารถแยกออกจากกันได้
โดยใช้เทคนิค isoelectric focusing
- Extinction coefficient คุณสมบัติ
การดูดของแสง UV ที่ความยาวคลื่น 280 nm
ซึ่งมีความสัมพันธ์กับค่าคงที่ (extinction coeffi-
ciency หรือ molar absornptivity) เป็นอีกคุณสมบัติ
เฉพาะตัวของ polypeptide แต่ละชนิด
- Electrophoretic patterns องค์
ประกอบของ polypeptides ในยาที่เตรียมขึ้น
สามารถแยกออกจากกันได้ตามฟิล์มโดยใช้ SDS-PAGE หรือ capillary electrophoresis
เกิดเป็นลักษณะตัวอย่างที่สามารถนั้นหนักของ polypeptide แต่ละส่วน patterns ที่เกิดขึ้นนี้เป็น
ลักษณะเฉพาะตัวขององค์ประกอบยาที่เตรียมขึ้น
สามารถบอกถึงความถี่ของการเตรียมแต่ละระดับ
และความมั่นคงที่ได้
- Liquid chromatographic patterns
เป็นการระบุความจำเพาะขององค์ประกอบที่
เตรียมขึ้นตามคุณสมบัติต่างๆ เช่น ประตู (ion-exchange liquid chromatography), การละลาย
(reverse-phase liquid chromatography) ทำให้
ได้ข้อมูลความในเบื้องต้นองค์ประกอบที่เตรียมได้
- Spectroscopic profiles การหา
โครงสร้างในกลุ่มระดับสูง secondary structure
โดยวิธี circular dichroism และ tertiary structure
โดยวิธี nuclear magnetic resonance (NMR)
มีประโยชน์ในการเรียบเรียงโครงสร้าง 3 มิติ
ระหว่าง polypeptide พบในธรรมชาติ กับ recom-
binant polypeptide ในกรณีที่จำเป็นต้องได้ recom-
binant polypeptide ที่มีโครงสร้าง 3 มิติที่ถูกต้อง
เพื่อ bind กับลู่ ligand

หมายเหตุ วิธีการที่ใช้ในการตรวจสอบนี้
อาจเปลี่ยนแปลงได้ตามเทคโนโลยีที่พัฒนาขึ้น

2. การทดสอบดุลยสมบัติทางชีวภาพ (Biologi-
cal activity)

คุณสมบัติด้านการออกฤทธิ์ทางชีวภาพ
เป็นปัจจัยสำคัญในการพัฒนาลิพปิตติได้เพื่อ
ใช้กับมนุษย์ วิธีการตรวจสอบดุลยสมบัติต่างๆ
มีหลายวิธีจัดตัวอย่างที่จะทำล่วงไป

ข. Animal-based biological assays
เป็นการใช้สัตว์ทดลองเพื่อคัดเลือกผลการทดสอบต่อไป

ค. Cell culture-based biological assays
เป็นการศึกษาความเปลี่ยนแปลงทางชีวเคมีและ
สรีรวิทยา ระดับเซลล์ต่อไป

ง. Biochemical assays เป็นการตรวจ
วิเคราะห์ทางเคมี ระดับ enzyme หรือระดับ
การตอบสนองทางธุรกิจกับวิทยาที่เปลี่ยนไป

จ. Ligand/receptor binding assays
สามารถใช้เป็นดับบังคับซึ่งคุณสมบัติทาง biological ได้
ผลจากการศึกษาจะเป็นข้อมูลพื้นฐานในการ
ทดสอบยาในคลินิก อย่างไรก็ตามผลที่ได้รับจาก
การทดสอบในคลินิกอาจไม่ตรงกับการทดสอบ
biological activity เชิงตัวเนื่องได้ การรายงานผล
ของการทดสอบควรจะรายงานเป็น units of activity
ซึ่งปรับให้เหมาะสมกับวัฏจำทั่วโลก
3. การทดสอบคุณสมบัติทางอินมูโนโลจี (Immunonochemical properties)

ในการที่ไป.Quantity of isolated antigens ที่ต้องการนำมาใช้ทางการแพทย์ คุณสมบัติต่าง ๆ การปฏิบัติการพิษยา (Immunological properties) จะต้องคุณภาพของ Antigen ที่แท้จริงต้องแยกแยะจากบริสุทธิ์ (purity antigens) และต้องจัดเก็บไปยังบริเวณจำพวกที่แยกเจาะเงาของอินวคิวติซิส (regions of antigens) โดยทำ การศึกษาเพื่อระบุคุณลักษณะของผลิตภัณฑ์ผลิตภัณฑ์ ของแอนติเจนที่เกี่ยวข้อง ปฏิวัติเข้ากับกลุ่ม (cross reactivity) โดยเฉพาะที่เกิดกับแอนติเจน ซึ่งพบว่าไปในมนุษย์เป็นสิ่งที่ต้องหลีกเลี่ยง นอกจากนี้ยังทำ avidity และ affinity กับเป็นอิสระ ปัจจัยหลักในการคัดเลือกแอนติเจนสำคัญในการทาง การแพทย์

การศึกษาคุณสมบัติเฉพาะตัวของโปรตีนแอนติเจน แอนติจีนเหล่านี้สามารถทำได้โดยใช้ immunochemical procedures เช่น ELISA, Western blot ผลการทดลองที่ได้อ้างอิงมาใช้ประเมินความ บริสุทธิ์ (purity) และความเป็นเนื้อเดียวกัน (homogeneity) ได้อย่างดี

4. Purity, impurities และ contaminants

ก. Purity

การตรวจสอบความบริสุทธิ์มีการที่ใช้ (method-dependent) การประเมินความ บริสุทธิ์ของสารวัตถุในเรื่องประเภท (relative purity) ที่มักที่จะเป็นไปในระดับการผลิต ระดับของ biological activity (units) ต่อกิโลกรัม ของ product ทำให้คำว่า “purity” เป็นความแม่นยำ ในการที่สารปรับเปลี่ยนเป็น DNA อาจใช้กระบวนการตรวจจับโดยวิธี hybridization อีกส่วนหนึ่งของสารมี impurities คือการเปลี่ยนสภาพของสารภายหลังกระบวนการเก็บรักษา (degradation products)

การตรวจสอบปริมาณและคุณลักษณะของ สารปรับเปลี่ยนเหล่านี้จะขึ้นไปใช้ทดสอบความเป็น ความแปรผันที่ยอมรับได้ต่อไป
0. Contaminants

The contaminants (contaminants) are different things with different characteristics and are defined as: chemical/biochemical materials (microbial protease) or bacterial or microbial species (microbial species). In addition, some similar things include viruses and/or drug products. In terms of contamination, culture cells, such as mycoplasma, cannot be produced. This means that if there is any contamination, an important finding is the presence of contamination in the production process.

0. Quantity

The quantity of contaminants is determined by the method and the type of product. In addition, the quality of the production process can also affect the quantity of contaminants. The quality assurance of the production process is important. In the case of biotechnology products, the quantity of contaminants is determined by the method and the type of product. Therefore, it is important to have high quality assurance in the production process.

Clinical Trial

One of the key factors in the clinical trials of biotechnology products is the production and quality assurance of the production process. In addition, the method and type of products are also important in the clinical trials. Therefore, it is important to have high quality assurance in the production process.

1. Phase I

In Phase I, the clinical trials are conducted in a small number of healthy volunteers. The purpose of this phase is to determine the safety and appropriate dosage of the drug candidates. In this phase, the safety and efficacy of the drug candidates are evaluated. If the results are satisfactory, the drug candidates will be advanced to the next phase. If the results are not satisfactory, the drug candidates will be discontinued. In this phase, the main focus is on the safety and efficacy of the drug candidates.

2. Phase II

In Phase II, the clinical trials are conducted in a larger number of patients. The purpose of this phase is to determine the efficacy and safety of the drug candidates in a larger patient population. In this phase, the drug candidates are administered to a larger number of patients. The safety and efficacy of the drug candidates are evaluated. If the results are satisfactory, the drug candidates will be advanced to the next phase. If the results are not satisfactory, the drug candidates will be discontinued. In this phase, the main focus is on the efficacy and safety of the drug candidates.

3. Phase III

In Phase III, the clinical trials are conducted in a large number of patients. The purpose of this phase is to determine the efficacy and safety of the drug candidates in a real-world setting. In this phase, the drug candidates are administered to a large number of patients. The safety and efficacy of the drug candidates are evaluated. If the results are satisfactory, the drug candidates will be approved for marketing and use. If the results are not satisfactory, the drug candidates will be discontinued. In this phase, the main focus is on the efficacy and safety of the drug candidates in a real-world setting.