การเตรียมตกอนปัสสาวะเพื่อใช้เป็นวัสดุการเรียนการสอน

มงคล โฉนดมณี* ณัฐธิชา ดิ่งศรีไชย* และประสิทธิ์ ชนาธิต* นักศึกษา

บทคัดย่อ

วัตถุประสงค์: เพื่อศึกษาวิธีการเตรียมตกอนปัสสาวะในรูปแบบแผนผังตัวอักษร "Cytospin concentrate technic" และศึกษาความคงตัวและความรุนแรงของตกอนปัสสาวะที่เตรียมได้

วิธีการ: นำตกอนสารประกอบสัตว์จำนวน 200 ราย จากหน่วยปัสสาวะแหล่งน้ำและงานปฏิบัติการคลังโรคจุลศึกษา ถนนนครไชยศรี ประมาณ 1% Glutaraldehyde ผสมเกลือ และ 200/200 μL ของน้ำ ซึ่ง 22% bovine serum albumin หลอด แล้วปั่นด้วยเครื่อง Cytospin ด้วยความเร็ว 600 rpm นาน 2 นาที แล้วนำไปที่ความเย็นหรือใน 24 ชั่วโมง แล้วนำไปใน Sternheimer-Malbin stain (SMS) ที่เวลา 15, 30, 45 และ 60 นาที และตรวจดูตกอนปัสสาวะตัวอย่างจุลทรรศน์ทุกๆ 7 วัน

ผลการทดลอง: ตกอนปัสสาวะที่ได้จากการเตรียมด้วย "Cytospin concentrate technic" ดีกว่าที่เตรียมด้วยSMS ที่เวลา 15, 30, 45 และ 60 นาที มีการกระจายตัว รูปร่างสมบัติและลักษณะสีที่สุ่ม และพบว่าทั้งคาด คาด และผลติดที่ได้มีความคงตัวมากกว่า 20 สัปดาห์ ยกเว้น Triple phosphate, Fatty cast และ Calcium oxalate มีความคงตัวและคงรูป 2, 3 และ 4 สัปดาห์ตามลำดับ

สรุปผลการทดลอง: ตกอนปัสสาวะในรูปแบบด้วยเทคนิค "Cytospin concentrate" สามารถนำมาใช้เป็นวัสดุในการเรียนการสอนได้ วารสารเทคนิคการแพทย์ เชียงใหม่ 2544; 34: 31-7.

คำที่สำคัญ: ตรวจวิเคราะห์ปัสสาวะ, ตกอนปัสสาวะ, วัสดุการเรียนการสอน

*ภาควิชาวิชาระดับศาสตร์บัณฑิต คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่
Abstract: Preparation of Urine Sediment for Being Learning and Teaching Materials

Chotayaporn M*, Intasai N* and Chanarat P*

Objective: To study the method of preparation and observe the stability of urine sediment after performing the Cytospin concentrate technic.

Materials and Methods: Urine from 200 patients attending Kidney Transplantation Unit and Central Laboratory, Maharaj Nakorn Chiang Mai Hospital were centrifuged. Urine sediment was treated by 1% glutaraldehyde in normal saline solution (NSS), then various concentrations of cast or cells or crystals were adjusted to 200/50 µL, 200/100 µL, 200/150 µL and 200/200 µL and 1 drop of 22% bovine serum albumin was added. The suspension was centrifuged at 600 rpm. for 2 minutes at room temperature by Cytospin. The urine sediments were stained by Sternheimer-Mallin stain (SMS) for 15, 30, 45 and 60 seconds, and observed under microscope for every 7 days.

Results: The result showed that the optimal concentration of cast or cells or crystals was 200/200 µL and staining by SMS for 45 second provided the best distribution, morphology and staining. Furthermore, it was found that all casts, cells and crystals had been stable not less than 20 weeks. Whereas, triple phosphate crystal, fatty cast and calcium oxalate crystal had been stable for 2, 3 and 4 weeks respectively.

Key words: Urinalysis, urine sediments, learning and teaching material

*Department of Clinical Microscopy, Faculty of Associated Medical Sciences, Chiang Mai University

บทนนำ
การตรวจการเตรียมสิ่งตัวอย่างของจุลทรรศน์ (Urine sediment examination) มีความสำคัญทางการแพทย์ ซึ่งช่วยแพทย์ในการวินิจฉัยและตัดสินผลการวินิจฉัยระบบทางเดินปัสสาวะ เช่น การตรวจ Leukocyte แสดงถึง Urinary tract infection, Pyelonephritis ตรวจพบ Red blood cell cast แสดงถึง Glomerulonephritis ตรวจพบ White blood cell cast แสดงถึง Pyelonephritis ตรวจพบ Renal tubular epithelial cell cast แสดงถึง Tubular damage ตรวจพบ Oval fat bodies แสดงถึง Nephrotic syndrome เป็นต้น ¹⁻⁴
อย่างถูกต้อง ดังนั้นหน่วยงานหรือสถาบันการศึกษาที่เกี่ยวข้องกับการผลิตนักศึกษาคณิตศาสตร์ ซึ่งมีส่วนเกี่ยวข้องต่อสู่ภาพของการตรวจปัสสาวะโดยตรง กล่าวคือจะต้องอธิบายให้นักศึกษาจ่าแม่กนิษฐาของ الوقتปัสสาวะซึ่งต่าง ๆ จากตัวอย่างของจริง มิใช่จากการสูญเสียกล้าจุลทรรศบนเพียงอ่านดังนี้

แต่ถ้าปรากฏล่าช้าการเตรียมตกอน ปัสสาวะหลังล้างส่องแต่งตัวกล้าจุลทรรศน์ คือ ความไม่คงตัวและเครื่องเตรียมตกอนปัสสาวะโดยเฉพาะตกอนปัสสาวะที่เรียกว่าคาดการ (Cast) จะสื่อลงจากอาการของผู้ป่วยหรือตกอนปัสสาวะออกมาเพียง 1 ขั้นนั้นที่ถูกควบคุมוהและสื่อลงในซูบใน 4 ขั้นนั้นถ้าเกิดให้ที่ 4 °C ซึ่งต้องได้มีการนำ Formalin และ Thymol มาป้องกันการสื่อลง สาขาของตกอนปัสสาวะ สารที่ 2 ชนิดนี้สามารถคงสภาพตกอนปัสสาวะได่านาน 7 วัน แต่ถ้าถึงหยดตกอนปัสสาวะที่เตรียมได้นั้นก็ยังยังต้องการติดแสงด้วยกล้องจุลทรรศน์ เนื่องจากตกอนปัสสาวะที่อยู่ในรูปของเหลืองจะม่วงข้างถ้ากันของ Cover slip ด้วยสารกันรักษาที่สูง คงสภาพตกอนปัสสาวะได้ดีที่ทำให้ตกอนปัสสาวะที่ติดแสงนั้นคงอยู่ในรูปปะวนได้ที่ต้องการติดแสงและทำให้รูปปะ versa ของตกอนปัสสาวะเปลือกปุย ซึ่งในปัจจุบันนี้มีการ น้ำยา Cytospin concentrate technic หรือ cytocentrifuge ซึ่งในการเตรียมหัวล้างจากของเหลืองที่จะส่องนั้นใส่หลอด (Cerebrospinal fluid)" ซึ่งจากผู้ป่วยเริ่มต้นมีเลือดตรา (Leukemia) เลือดตราในเตรียมได้จึงเป็นเครื่องแข็ง เครื่องมือกับแผ่นเลือก ซึ่งเป็นการเตรียมเลือดให้เคลื่อนที่ ภายใต้การตั้งส่องแสงด้วยกล้องจุลทรรศน์และยังทำให้ใช้หลักการอุดมคติหลัก

เครื่อง Cytocentrifuge อาศัยหลักการบีนแยกตัวอย่างของหลักการส่องจกอย่างชัด จากรูม 1,000 ระดับต่อหน้าที่เป็นเวลา 5-10 นาที และในระหว่างการบีนดิน ส่วนที่เป็นนั้นจะต้องเข้ม เข้าไปยังระดับต่ำกว่า ทำให้ส่วนที่เป็นหลอดใน ของเหลืองขึ้นชั้น และไปเยี่ยมยุ้ยที่ Microscope slide เป็นรูปกลมขนาดเล็กสูงน้อย广大群众 6 มิลลิเมตร ต้องจากนั้นนำเลือดนั้นมาเยื่อสมั่น เช่น Sternheimer–Malbin Stain และนำไปตรวจว่า

หลอดสีดวยกล้องจุลทรรศน์ดังนี้

แต่ถ้าไม่สามารถจะไม่มีรายงานการใช้ Cytospin concentrate technic สำหรับเตรียมตกอนปัสสาวะล่าช้าตรวจในงานประจำวัน (Routine urinalysis) รายงานนี้จึงสังเกตวิธีการเตรียมตกอนปัสสาวะ ความคงตัวและเครื่องเตรียมตกอนปัสสาวะที่เตรียมด้วย Cytospin concentrate technic เพื่อนำไปใช้ประโยชน์ในการเตรียมตกอนปัสสาวะเพื่อใช้เป็นวัสดุในการเตรียมตกอนต่อไป

วัสดุและวิธีการ

1. ทดสอบความไว้แต่ละที่ที่มีความสัมผัส ตกอนปัสสาวะที่ใช้เป็นด้วย Cytospin concentrate technic

เตรียมตกอนปัสสาวะโดยบีนล้างตกอนปัสสาวะด้วย 1 % Glutaraldehyde in NSS 2 ครั้ง ที่ 400 g นาน 5 นาที ตรวจจับความเข้มข้นตกอนปัสสาวะด้วย FAST–READ 102 NEW GRID® และเปรียบเทียบกับหลอดปัจจุบันให้ความเข้มข้นของตกอนปัสสาวะ 200/50 μL, 200/100 μL, 200/150 μL และ 200/200 μL ทดสอบด้วย bovine serum albumin 1 หยด แล้วนำตกอนปัสสาวะเตรียมได้เป็นด้วยเครื่อง Cytospin ที่ อุณหภูมิองค์ความเร็วอย่าง 600 rpm. นาน 2 นาที ย้อมด้วยย้อม Sternheimer–Malbin Stain (SMS)
2. ทดสอบระยะเวลาที่เหมาะสมสำหรับย้อมสีตะกอนปิสสาวาด้วย SMS
โดยศึกษาระยะเวลาที่เหมาะสมในการย้อมเปรียบเทียบระยะเวลา 15, 30, 45 และ 60 วันที่

3. ทดสอบความคงตัวของตะกอนปิสสาวาด้วย SMS โดยตะกอนปิสสาวาจากผู้ป่วยจำนวน 200 ราย ตัวเครื่อง Cytospin และย้อมด้วยย้อม SMS (ใช้วิธีการที่เหมาะสมที่ได้จากการศึกษาข้อ 1 และ 2) หยด Permount และปิดทับด้วย Cover-slip ตรวจเก็บจำนวนของตะกอนปิสสาวาที่เลือมสายพันธุ์จากเตรียมตัวย้อมในจุลทรรศน์สั้น ๆ 7 วัน

ผลการทดลอง

1. ผลการทดลองที่เหมาะสมสำหรับ Cytospin concenrate technic

ตารางที่ 1 ปริมาณปิสสาวาที่เหมาะสมที่ใช้บันทด้วย Cytospin concenrate technic

<table>
<thead>
<tr>
<th>ปริมาณปิสสาวา (มล.)</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>ตะกอนปิสสาวาแห้งภายใน 1 นาที</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>NG</td>
<td>G</td>
</tr>
<tr>
<td>การกระจายตัวของตะกอนตัว</td>
<td>NG</td>
<td>NG</td>
<td>G</td>
<td>G</td>
<td>NG</td>
<td>G</td>
</tr>
<tr>
<td>รูปร่างของตะกอนไม่เปลี่ยนแปลง</td>
<td>NG</td>
<td>NG</td>
<td>NG</td>
<td>G</td>
<td>G</td>
<td>NG</td>
</tr>
</tbody>
</table>

G = ดี, NG = ไม่ดี

รูปที่ 1 ลักษณะของตะกอนปิสสาวาที่ได้จากการปิสสาวาปริมาณ 200 มล. ซึ่งมีความเข้มข้นของเซลล์ ผลึก และคาร์บอที 200 ต่อปริมาตร 200 มล. มีการกระจายตัวของเซลล์และคาร์บอที ตะกอนแห้งภายใน 1 นาที และรูปร่างของตะกอนปิสสาวาไม่เปลี่ยนแปลง ดังตารางที่ 1 และรูปที่ 1
2. ผลการทดสอบระยะยาวเวลาที่เหมาะสมสำหรับย้อมสีตกอนปิสสารด้วย SMS

จากการเตรียมตกอนโดยใช้ปิสสารบริสุทธิ์ 200 มิลลิลิตรที่ความเร็ว 600 rpm นาน 2 นาที และใช้ระยะเวลาในการย้อมตกอนปิสสารด้วย SMS นาน 15, 30, 45 และ 60 วินาทีพบว่าที่ระยะเวลา 45 วินาที เซสล์และสารเคมีติดตัวคิดเป็นสูง โดยไม่ค่อยและใช้ได้เพื่อสืบค้นต่าง ๆ สามารถแยกความแตกต่างของเซลล์และสารเคมีได้อย่างชัดเจน

3. ผลการทดสอบความคงตัวของตกอนปิสสารที่เตรียมด้วย Cytospin concentrate technic

ชนิดของตกอนปิสสารที่เตรียมได้จากผู้ป่วยจำนวน 200 รายพบประกอบด้วย Squamous epithelial cell จำนวน 30 ราย, Bladder epithelial cell จำนวน 2 ราย, Renal tubular epithelial cell จำนวน 5 ราย, Renal pelvis epithelial cell จำนวน 3 ราย, White blood cell จำนวน 20 ราย, Red blood cell จำนวน 13 ราย, Hyaline cast จำนวน 36 ราย, White blood cell cast จำนวน 30 ราย, Red blood cells cast จำนวน 2 ราย, Granular cast จำนวน 8 ราย, Waxy cast จำนวน 3 ราย, Fatty cast (oval fat bodies cast) จำนวน 1 ราย, Calcium oxalate crystal จำนวน 15 ราย, Uric acid crystal จำนวน 6 ราย และ Triple phosphate crystal จำนวน 2 ราย

จากการตรวจรูปแบบตกอนปิสสารด้วยกล้องจุลทรรศน์นกขุดๆ 7 วัน โดยนับจำนวนตกอนปิสสารแต่ละชนิดจำนวน 10 High power field (HPF) โดยนับเฉพาะตกอนปิสสารที่มีรูปช่องสัญญาณที่ชัดเจนท่านบน และคำนวณเป็นเปอร์เซ็นต์ที่เทียบกับตกอนปิสสารเริ่มต้น แสดงดังรูปที่ 2 พบว่าการเลือกเซลล์และสารเคมีที่เตรียมได้มีความคงตัวมากกว่า 20 สิบนาที ยกเว้น Triple phosphate, Fatty acid และ Calcium oxalate มีความคงตัวและคงรูป 2, 3 และ 4 ดับเบิลธาตุตามลาดับ

สาหร่ายที่เหมาะสมสำหรับเตรียมตกอนปิสสารด้วย Cytospin concentrate technic โดยใช้ตัวอย่างปิสสาร 200 มิลลิลิตร (200 sediments/200 มิลลิลิตร)ผสมกับ 22% BSA 1 หยดเพื่อช่วยคงสภาพรูปช่องตกอนปิสสาร

รูปที่ 2 ความคงตัวของรูปช่องสัญญาณของตกอนปิสสารที่เตรียมได้ต่าง ๆ

การนับจำนวนเซลล์ สารเคมีและ澍อนปิสสารด้วย coverslip.
ซึ่งจะช่วยทำให้เห็นรูปทางของตกขอบปัสสาวะได้อย่างชัดเจน
ตกขอบปัสสาวะที่เตรียมได้มีความคงตัวและ
ครอบคลุมกว่า 20 สิ่งต่าง ๆ ที่ตั้งค่า (Hyaline cast,
White blood cell cast, Red blood cells cast,
Granular cast และ Waxy cast) เช่น เซลล์ (Squamous
epithelial cell, Bladder epithelial cell, Renal
tubular epithelial cell, Renal pelvis epithelial cell,
White blood cell และ Red blood cell) และสิ่งต่าง
c (Uric acid) ส่วน Triple phosphate Fatty cast
และ Calcium oxalate มีความคงตัวและครอบคลุม 2, 3
และ 4 สิ่งต่างๆตามลำดับซึ่งบ้านพตลาดที่การเรียน
การสอนและสามารถนำมาเป็นหลักฐานปัสสาวะ
เพื่อใช้เป็นตัวอย่างในการเรียนการสอนได้

กิตติกรรมประกาศ
ผู้วิจัยของคุณ มหาวิทยาลัยเชียงใหม่ ที่
อนุมัติทุนวิจัย ในการวิจัยเพื่อพัฒนา นักวิจัย
รุ่นใหม่ ประจำปี 2543

บรรณานุกรม
1. ภักิติยา จูบบุญ. คู่มือการตรวจปัสสาวะ.
โครงสร้างศิริราช คณะแพทยศาสตร์ศิริ
ราชพยาบาล มหาวิทยาลัยมหิดล. กรุงเทพฯ
2531
2. รัตน์ ฤทธิ์ภูมิ. ปัสสาวะ. ภาควิชาคลินิกภิวิ
ไมโครสโคป คณะเทคนิคการแพทย์ มหา
วิทยาลัยมหิดล. กรุงเทพฯ 2531.
3. Bradley M, Schumann GB, Ward PCJ:
Todd–Sanford–Davidson’s Clinical
Diagnosis and Management by Laboratory
Methods. 16th ed Philadelphia : WB
4. Brody LH, Salladay JR, Armbruster K.
Urinalysis and urinary sediment. Med Clin
5. Routine urinalysis and collection, transpor-
tation and preservation of urine specimens,
tentative guidelines, Villanova, Pa., Dec.
1992, National Committee for Clinical
Laboratory Standards, 12(26) 16–T.
Evaluation of the Sysmex UF–100
automated urinalysis analyzer. Clin Chem
7. Ringsrud KM, Linne J. Urinalysis and Body
Fluids : A Color Text and Atlas. St. Louis:
1995.
8. Evans DIK, O's PourK C, Jones PM. The
cerebrospinal fluid in acute leukemia of
childhood: studies with the cytocentrifuge.
9. Barrett DL, King EG. Comparision of
cellular recovery rates and morphologic
detail obtained using membrane filter and
cytocentrifuge technique. Acta Cytol 1976;
10. Choitt A, Anderson PJ. Diagnosis cytology
of cerebrospinal fluid by the cytocentrifuge
method. Am J Clin Pathol 1979; 72:
931–43.
11. Davey DD, Foucar K, Giller R. Millipore
filter vs cytocentrifuge for detection of
childhood central nervous system leukemia.
differential cytology of cerebrospinal fluids

36
