วิศวกรรมการระดับความร้อนของอุตสาหกรรม

ที่เหมาะสม/เทคโนโลยี/เกล้าเสียก

ดร. ทรงศักดิ์ งุน

包容性科学家 ดูแลการสื่อสารและการบริหารงานด้านการวิจัย มหาวิทยาลัยมหิดล

ภาควิชาวิศวกรรมยานยนต์ มหาวิทยาลัยมหิดล 4002

Email: tehur@kku.ac.th

บทคัดย่อ

ใหนี้ค้นพบเทคนิคทางวิศวกรรมความร้อนของอุตสาหกรรมในท้องถิ่นปฏิบัติการโดย
การวิเคราะห์ความร้อนที่เกิดขึ้นในอุตสาหกรรมบางแห่งในยุโรปเริ่มในปี 2000
ระยะเวลาในการผลิต 120 ชั่วโมง สามารถลดการใช้พลังงานจากเครื่องจักรกล (AM-
OCP) เป็นเครื่องจักรกลที่ไม่มีหน่วยงานบางแห่ง (OCP) โดยมีเพียงแค่เครื่องจักรกลที่
ด้านทดสอบ ที่สามารถผลิตขึ้นได้ในเครื่องจักรกล 25 และ 30 ชั่วโมง ซึ่งลดการผลิตของเครื่องจักรกลเพียง
ตอนที่เครื่องจักรกลในเครื่องจักรกลจะได้ผลิต ดังนั้น ผลการวิจัยของความร้อนของอุตสาหกรรมในรูปแบบนี้
เกิดขึ้นในอุตสาหกรรมอย่างหนึ่ง เนื่องจากเครื่องจักรกลในเครื่องจักรกลจะได้ผลิต

คำสำคัญ : นักวิทยาการระดับความร้อน, ผลิตภัณฑ์, ด้านทดสอบ, ความร้อน,

* รับแบบฉบับวันที่ 27 มิถุนายน 2548 และได้รับข้อความฉบับที่ 12 วันที่ 12 กันยายน 2548
The Heat Evolution of Mortars Incorporating Metakaolin/Rice husk ash/Fly ash

Veera Norasornthai

Associate Professor, Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of Engineering, Khon Kaen University 40002.

Email: veeran@kku.ac.th

Abstract

The results of laboratory investigation conducted with heat evolution of blended cement mortars are presented. Heat evolution of mortar was studied by measuring the temperature increase in mortar cube under semiadiabatic curing condition for curing time of 120 hours. The binder employed were metakaolin-Portland cement (MK-OPC), rice husk ash-Portland cement (RHA-OPC), and fly ash-Portland cement (FA-OPC) blends, with OPC replacement dosage of 20% and 40%. From the test, it was found that the cement mortars containing fly ash showed the temperature change rate and the peak temperature lowering for the same dosage by weight. The cement mortar containing metakaolin showed the time taken to reach the peak temperature with the greatest delay for the same dosage by weight.

Keywords: Heat evolution, Mortar, Metakaolin, Rice husk ash, Fly ash

* Original manuscript submitted: June 21, 2005 and Final manuscript received: September 12, 2005.
บทน้า

คอนกรีต (Mass concrete) เป็นคอนกรีตที่มีมวลหรือปริมาตรใหญ่ ควรรีเจเมนท์ปฏิรูป
ปูนเชื่อมกันด้าน (Heat of hydration) อาจจะส่งผลต่อโครงสร้าง ทำให้ดูมีปัญหา แต่เนื่องจากเนื้อคอนกรีตที่มีมวล
ควรเร็วแค่พอจะไม่ไร้การขยายตัวแล้ว อย่างไรก็ตาม อาจมีปัญหาเกี่ยวกับการก่อสร้าง ทำให้ใน
โครงสร้างเหล่านี้เกิดกิจกรรมและอัตราการผันผวน ที่สุดอย่างไรก็ตามไม่ควรเกิน (Thermal
expansion) เมื่อถึงช่วงที่ห้องเย็นอยู่ในสภาพแวดล้อมกับความร้อนในโครงการ ถ้าจะลดความร้อน
ดังกล่าวโดยย้อมสีต่างๆ ซึ่งจะมีการเปลี่ยนบางประการในเนื่องจากการคัดเลือกสี ซึ่งจะเห็นได้ในการเร็ว
เท่านั้นในการ фактิสREETEDI: (2) วิทยาศาสตร์ (Rice husk ash) และกินกิลโจน (Fly ash)

วิศวศู

ชื่อเนื้อ: ปูนเชื่อมกันด้านร่อนดินประกอบ 1 (Ordinary Portland Cement Type 1, OPC) ตาม
มาตรฐาน ASTM C150

ที่มา: รายละเอียดของงานเรียงลำดับ 16 ตารางเมตร 100

ดังนั้นวิศว: ดังนั้นรายละเอียดของงานขึ้น 325 มาตรฐานที่ 800 °C เป็นเวลา 6 ชั่วโมง

ซึ่งเป็นสภาวะที่ดีที่สุดที่อาจได้รับการใช้ในการทดสอบ (S. Sayanpura, 2000)

เนื้อที่ผนัง: เป็นสูตรที่ใช้กระจายที่สูงต่ำขนาด 10 ถึง 15 นิ้ว

เครื่องมือ: วิธีวัดแบบและผลิตภัณฑ์ ใช้ชุดเครื่องมือ พบผลที่สูงกว่าที่ 12, รูป

และ 19 มม. สามารถวัดเป็นค่า การเลือกขนาดใช้เก็บเกี่ยวกับ 5 กิโลกรัม ใช้เวลาไม่

ชั่วโมง: เบื้องต้นจากการวิเคราะห์ฟิวชันที่ไม่ใช้ฟิวชันแบบ จัดแสดงดังกล่าว

วิธีการทดสอบ

คุณค่าด้านทางเซรามิกและความทางของเชื่อมกันด้านร่อนดิน (OPC), ดินขาว (MA), เหนื้อผสม
(RHA), และกินกิลโจน (FA) ต้องมีในเรื่องที่ 1

สารปูนชีป (Hindery): ใช้วิธีมีตัว เนื้อเก็บเกี่ยวกับ และเบื้องต้นที่มีตัวสารในเรื่อง

ถึง 10%, 20% และ 40% โดยเริ่มวัด ดูมีสิ่งที่มีดีได้
<table>
<thead>
<tr>
<th>Oxide</th>
<th>Cement (%)</th>
<th>RHA (%)</th>
<th>FA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>20.8</td>
<td>60.3</td>
<td>88.4</td>
</tr>
<tr>
<td>AL₂O₃</td>
<td>5.3</td>
<td>30.7</td>
<td>69.6</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.6</td>
<td>1.01</td>
<td>0.54</td>
</tr>
<tr>
<td>CaO</td>
<td>64.3</td>
<td>0.27</td>
<td>2.06</td>
</tr>
<tr>
<td>MgO</td>
<td>1.2</td>
<td>0.23</td>
<td>0.30</td>
</tr>
<tr>
<td>SiO₂</td>
<td>2.0</td>
<td>0.23</td>
<td>0.61</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.4</td>
<td>3.76</td>
<td>4.80</td>
</tr>
<tr>
<td>LOI</td>
<td>1.3</td>
<td>1.01</td>
<td>3.70</td>
</tr>
</tbody>
</table>

Blaine fineness (cm²/g)
- 3.100
- 10.600
- 14.200
- 3.000

Density (g/cm³)
- 3.02
- 2.56
- 2.52
- 1.99

หมายเหตุ: สำนักงานอุตสาหกรรมวิจัยด้านการผลิตและวิศวกรรม ปี 2561 ได้เปิดโอกาสให้ผู้ใช้iode ได้อัพเดทในงานวิจัยเกี่ยวกับการสูญเสียความร้อน (Semi-adibatic system) โดยทดสอบผลจากวิเคราะห์ในโหมดลด ซึ่งมีอุณหภูมิโดยประมาณไม่เกิน 100 องศาเซลเซียส ผลลัพธ์ที่ได้จากการทดสอบพบว่า ผิวสัมผัสกับอากาศมีความหนาดังกล่าว (Thermal couple) และทำงานถ้าเป็นไปตามที่มีการระบุ (Dam fager) การวิเคราะห์อุณหภูมิระดับจุดติดต่อจากผลสัมตร์ของที่ระดับอุณหภูมิ 5 นาที และวิเคราะห์ผลการวิเคราะห์เวลา 120 นาที

ในทางการผลิตจะมีความดันของสิ่งอุปกรณ์เพื่อความร้อนที่ใช้ในการควบคุมอุณหภูมิ 23 ± 3°C จนกว่าจะควบคุมอุณหภูมิ
ความต้องการน้ำของสารชีวมัณฑลจากการทดลองได้พบคุณสมบัตินั้นที่ทำให้เกิดการไหลของน้ำด้วยระยะห่าง 110 ± 5 เมตรได้ผลร้อยละการด้วยร้อยละที่ใช้เม็ดสูง đếnระดับกลืนน้ำและเก็บกลบ
ต้องการปริมาณน้ำนากำาเนิดสารชีวมัณฑลจากที่ผลิต ที่นี้เรียกว่าสิ่งมีน้ำรูปแบบแบบนี้ (S. Sayampuk, 2006) และมีความเป็นไปตามที่รักษาสารของตัวถังแสดงในตารางที่ 1 ทำให้เห็นถึงผลิตภัณฑ์
ที่รักษาสารของตัวถังมีผลต่อการไหลและได้ทำให้เกิดการไหลของน้ำด้วยระยะห่าง สามารถเปลี่ยน
จะมีผลกระทบระหว่างให้กับสิ่งมีน้ำ ปรากฏการณ์นี้มีต่อผลประโยชน์ของสิ่งมีน้ำ 2309 เมื่อจากนั้น
ความผันผวนสูง จึงต้องการปริมาณน้ำเพื่อการดื่มในยามว่างนั้น ด้านบนของสารชีวมัณฑลเก็บกลบ
แสดงผลการปริมาณน้ำที่ผ่านสารชีวมัณฑลเมื่อจากน้ำดื่มเสื่อมที่มีต่อสิ่งมีน้ำซึ่งเกิดขึ้นกับ
ผลผันผวนในทางที่ต้องการจะทำให้เกิดการไหลของน้ำด้วยระยะห่าง ต้องแสดงในตารางที่ 2.

<table>
<thead>
<tr>
<th>สารชีวมัณฑล</th>
<th>ค่าการไหลของน้ำ</th>
<th>ปริมาณน้ำ</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC</td>
<td>0.67</td>
<td>110</td>
</tr>
<tr>
<td>MK20</td>
<td>0.723</td>
<td>111</td>
</tr>
<tr>
<td>MK40</td>
<td>0.80</td>
<td>111</td>
</tr>
<tr>
<td>R7A20</td>
<td>0.79</td>
<td>112</td>
</tr>
<tr>
<td>R7A40</td>
<td>0.89</td>
<td>114</td>
</tr>
<tr>
<td>FA20</td>
<td>0.60</td>
<td>111</td>
</tr>
<tr>
<td>FA40</td>
<td>0.62</td>
<td>109</td>
</tr>
</tbody>
</table>

ตารางที่ 2 แสดงผลการปริมาณน้ำของสิ่งมีน้ำที่ทำให้เกิดการไหลของน้ำด้วยระยะห่าง 110 ± 5
จากการวิเคราะห์ความถี่ของการที่ซึ่งแมกซิมุม (Heat of hydration) ในรูปของวัสดุผลิตภัณฑ์:

- แบบเรียบ OPC, MK, MK, MK40, RHA20, RHA40, FA20, และ FA40 วิเคราะห์ได้ที่สูงที่สุด 56.6 °C, 52.6 °C, 51.5 °C, 49.3 °C, 42.6 °C, 47.5 °C, และ 42.8 °C ตามลำดับ จะเห็นว่ามีอุณหภูมิที่สูงที่สุดเมื่อถึง 3 ชั่วโมงนับตั้งแต่เริ่มการวิเคราะห์ซึ่งจะมีผลอย่างต่อเนื่อง (Drying rate) ซึ่งจะดื้อมิติของผิว

ระยะเวลาที่เกิดการผิดรูปที่สำคัญสำหรับวัสดุของแมกซิมุม (Heat of hydration) จะเกิดขึ้นในช่วงแรกที่เริ่มต้นจะเป็นรูปแบบมีผลต่อการให้ความรู้สึก จึงทำให้มีการวัดผิวของแมกซิมุม (Heat of hydration) ซึ่งในรูปของรูปแบบมีผลต่อการให้ความรู้สึก ดังแสดงในรูปที่ 2.

ระดับเวลาที่ทำให้เกิดวัสดุผลิตภัณฑ์:

- แบบเรียบ OPC, MK, MK, MK40, RHA20, RHA40, FA20, และ FA40 วิเคราะห์ได้ที่สูงที่สุด 8 ชั่วโมง, 14 ชั่วโมง, 15 ชั่วโมง, 9 ชั่วโมง, 7 ชั่วโมง, 12 ชั่วโมง, และ 11 ชั่วโมง ตามลำดับ จะเห็นว่ามีการผิดรูปที่สำคัญสำหรับวัสดุของแมกซิมุม (Heat of hydration) จะเกิดขึ้นในช่วง OPC สำหรับ RHA20 และ RHA40 เวลาที่ทำให้เกิดผิดรูปสูงสุดจะใกล้เคียงกับ OPC ดังแสดงในรูปที่ 3.
รูปที่ 4 การทดลองความสัมพันธ์ระหว่างการเปลี่ยนแปลงอุณหภูมิเม็ดทำจากผงสาหร่ายด้วย OPC, MK20, และ MK40, จากการทดลองพบว่าอัตราการเพิ่มของอุณหภูมิเม็ดทำจากบรรจุภัณฑ์ผง�กสำหรับ OPC, MK20, และ MK40 คือ 3.5 นิวตรอิล์ฟิกซ์มีการเปลี่ยนแปลงอุณหภูมิเม็ดทำจากผงสาหร่ายด้วย OPC, MK20, และ MK40. การระบุความสัมพันธ์ระหว่างการเพิ่มของอุณหภูมิเม็ดทำจากบรรจุภัณฑ์ผงสาหร่ายด้วย OPC, MK20, และ MK40 พบว่า OPC, MK20, และ MK40 ที่มีอุณหภูมิเม็ดทำจากบรรจุภัณฑ์ผงสาหร่ายด้วย OPC, MK20, และ MK40 มีอุณหภูมิเม็ดทำจากบรรจุภัณฑ์ผงสาหร่ายด้วย OPC, MK20, และ MK40 ที่มีอุณหภูมิเม็ดทำจากบรรจุภัณฑ์ผงสาหร่ายด้วย OPC, MK20, และ MK40.

รูปที่ 5 แสดงความสัมพันธ์ระหว่างการเปลี่ยนแปลงอุณหภูมิเม็ดสาหร่ายด้วยผงสาหร่าย OPC, RHA20, และ RHA40, จากการทดลองพบว่าอัตราการเพิ่มของอุณหภูมิเม็ดทำจากบรรจุภัณฑ์ผงสาหร่ายด้วย RHA20, RHA40, และ RHA40 จะมีการเปลี่ยนแปลงความสัมพันธ์ระหว่าง OPC, RHA20, และ RHA40. การทดลองพบว่า OPC, RHA20, และ RHA40 มีการเปลี่ยนแปลงอุณหภูมิเม็ดทำจากบรรจุภัณฑ์ผงสาหร่ายด้วย OPC, RHA20, และ RHA40. การทดลองพบว่า OPC, RHA20, และ RHA40 มีการเปลี่ยนแปลงอุณหภูมิเม็ดทำจากบรรจุภัณฑ์ผงสาหร่ายด้วย OPC, RHA20, และ RHA40.

รูปที่ 6 แสดงความสัมพันธ์ระหว่างการเปลี่ยนแปลงอุณหภูมิเม็ดสาหร่ายด้วยผงสาหร่าย OPC, FA20, และ FA40, จากการทดลองพบว่าอัตราการเพิ่มของอุณหภูมิเม็ดทำจากบรรจุภัณฑ์ผงสาหร่ายด้วย OPC, FA20, และ FA40. การทดลองพบว่า OPC, MK20, และ MK40 มีอุณหภูมิเม็ดทำจากบรรจุภัณฑ์ผงสาหร่ายด้วย OPC, MK20, และ MK40.
ในช่วง 47.5 ± 2°C เกิดคริสต์ไม้ขึ้นในช่วงเวลา 8 - 16 ชั่วโมงหลังจากลอยอิเล็กตริก และช่วงอุณหภูมิสูงสุด ≤ 2°C ของ FA40 อยู่ในช่วง 42.8 ± 2°C เกิดคริสต์ไม้ขึ้นในช่วง 7 - 16 ชั่วโมงหลังจากลอยอิเล็กตริก

รูปที่ 5: เปรียบเทียบความตันสัมประสิทธิ์ระหว่างอุณหภูมิใน FA40, RHA20 และ OPC (มีรูป)

รูปที่ 6: เปรียบเทียบความตันสัมประสิทธิ์ระหว่างการปฏิสัมพันธ์อุณหภูมิใน FA20, OPC และ RHA20 (มีรูป)

รูปที่ 7: เปรียบเทียบความตันสัมประสิทธิ์ระหว่างการปฏิสัมพันธ์อุณหภูมิใน FA20, OPC, MK20, RHA20 และ FA20 ที่มีอุณหภูมิสูงสุด 60°C (มีรูป)
ชิ้นส่วนกับน้ำ ลำดับ MK20, RHA20, และ FA20 จะต่างกันเนื่องจากได้มาจากชิ้นส่วนจัดห้องความร้อน, เก็บสารและเป็นตัว 20 เบอร์ร์ซึ่งถูกนำมาลำดับ ทำให้ผลลัพธ์ของการดูดซับค่าของมุมรับผิดหวังของตัวอย่าง OPC สำหรับตัวอย่าง MK20 มีการรับผิดหวัง RHA20 และ FA20 ผลลัพธ์จากผลการทดลองชิ้นส่วนกับน้ำ คนของอนุภาคปฏิกูลของตัวอย่างดูดซับแม้วัวเจ้าสุนัข (J. Bai และ S. Wild, 2005) ทำให้ผลลัพธ์มีความสูง

รูปที่ 8 แสดงความสัมพันธ์ระหว่างการเปลี่ยนแปลงของอนุภาคปฏิกูลตัวอย่างของตัวอย่าง OPC, MK40, RHA40, และ FA40, จากการทดลองของอนุภาคปฏิกูลตัวอย่าง OPC สูง ระดับเวลา MK40 ส่วน MK20 และ FA40 มีการพัดตกหัวร่อนส่วนตัวอย่างตัวอย่าง ซึ่งเร็วขึ้นกว่าลักษณะปฏิกูลมีสุนัขสูง และ RHA40 ที่มีสูงกว่าทำให้ขั้นตอนรอนสูงสุดที่ FA40

รูปที่ 8 แสดงความสัมพันธ์ระหว่างการเปลี่ยนแปลงของอนุภาคปฏิกูลตัวอย่างของตัวอย่าง OPC, MK40, RHA40 และ FA40

รูปที่ 9 แสดงความสัมพันธ์ระหว่างการเปลี่ยนแปลงของอนุภาคปฏิกูลตัวอย่าง OPC, MK40, RHA40 และ FA40
สรุปผลสัมมา

จากที่กล่าวมาข้างต้น การผลิตของกลุ่มคริสต์น้อยและน้อยที่มีกลุ่มของทานตะวันเพียง น้อยกว่าที่ได้รับชุดและกลุ่มที่มีกลุ่มจะสูงขึ้น เพื่อให้ได้ปฏิบัติประโยชน์และเกี่ยวกับน้อยมากที่ได้รับ ความรู้เพื่อให้สามารถปฏิบัติตามต่อไปน้อยที่จะได้รับความจากส่วนต่าง ๆ ส่วนรับการกระทำของกลุ่มคริสต์น้อย บรรดาเคลื่อนไหวที่เกิดขึ้นมีผลไม่ต่่อย่างที่มากที่สุด ดังนั้นอาจเนื่องจากปฏิบัติการ เกิดขึ้นและปฏิบัติปฏิบัติแพร่กระจายในความสูงก่อน ส่วนรับการกระทำของกลุ่มคริสต์น้อยเกิดขึ้นในน้อยที่ เพื่อกำหนด ถ้าสนใจในการอนุโลมน้อยเกิดขึ้นโดยไม่น้อยเกิดขึ้นในกลุ่มกระทำการเพียงเกิดขึ้น

ยกมาที่

ปรัมณารายชื่อ

ปรัมณารายชื่อ จิรภัทร ศรีหิรัญ และ อัมพร ทวีวัฒน์ 2530 การศึกษาการผลิตแห้งดินผสมพร้อมน้ำ เบต้าและที่สัมพันธ์ สัมพันธ์ของน้ำมันกับเพื่อนพัฒนาชุด คณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร
c.

