จากการรู้วิทยาศาสตร์และการสืบเสาะสู่สะเต็มศึกษาและการออกแบบ; FROM SCIENTIFIC LITERACY AND INQUIRY TO STEM EDUCATION AND DESIGN

Main Article Content

ลือชา ลดาชาติ (Luecha Ladachart)
ลฎาภา ลดาชาติ (Ladapa Ladachart)

Abstract

ด้วยแรงกดดันทางเศรษฐกิจและสังคม สะเต็มศึกษาได้รับความสนใจมากขึ้นในช่วงไม่กี่ปีที่ผ่านมา บทความนี้มุ่งนำเสนอหลักการและเหตุผลของการเปลี่ยนแปลงจุดเน้นของการจัดการศึกษาวิทยาศาสตร์ จากเดิมที่เป็นการรู้วิทยาศาสตร์มาเป็นสะเต็มศึกษา อันเป็นเหตุให้เกิดการเปลี่ยนแปลงแนวทางการจัดการเรียนการสอน จากเดิมที่เน้นการสืบเสาะทางวิทยาศาสตร์มาเป็นการออกแบบเชิงวิศวกรรม บทความนี้นำเสนอบนพื้นฐานของการวิจัยและทฤษฎีการเรียนรู้ว่า การเรียนรู้โดยการออกแบบสามารถเป็นทางเลือกในการจัดการเรียนการสอนตามแนวทางสะเต็มศึกษา ซึ่งนักเรียนจะได้เรียนรู้วิทยาศาสตร์ผ่านกระบวนการออกแบบเชิงวิศวกรรม อย่างไรก็ดี ครูมีความท้าทายบางประการในการจัดกิจกรรมการเรียนรู้ที่มีการออกแบบเป็นฐาน


FROM SCIENTIFIC LITERACY AND INQUIRY TO STEM EDUCATION AND DESIGN


Because of economic and social pressure, STEM education has gained more attention in recent years. This article aims at presenting the rationale of the changing focus on science education from scientific literacy to STEM education, resulting in a change in an instructional approach from scientific inquiry to engineering design. This article presents based on empirical research and contemporary theories of learning that learning by design can be an alternative learning approach to STEM education, which students can learn science through engineering design processes. However, teachers have some challenges to conduct design-based learning activities.

Article Details

How to Cite
(Luecha Ladachart) ล. ล., & (Ladapa Ladachart) ล. ล. (2018). จากการรู้วิทยาศาสตร์และการสืบเสาะสู่สะเต็มศึกษาและการออกแบบ; FROM SCIENTIFIC LITERACY AND INQUIRY TO STEM EDUCATION AND DESIGN. Journal of Education and Innovation, 20(1), 246–260. Retrieved from https://so06.tci-thaijo.org/index.php/edujournal_nu/article/view/115593
Section
Academic Articles

References

Allen, M. (2014). Misconceptions in Primary Science. Maidenhead: Open University Press.
Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering Design Processes: A Comparison of Students and Expert Practitioners. Journal of Engineering Education, 96(4), 359-379.
Buaraphan, K. (2009). Thai In-service Science Teachers’ Conceptions of the Nature of Science. Journal of Science and Mathematics Education in Southeast Asia, 32(2), 188-217.
Bybee, R. W. (2010). Advancing STEM Education: A 2020 Vision. Technology and Engineering Teacher, 70(1), 30-35.
Capobianco, B. M., Diefes-Dux, H. A., MENA, I., & Weller, J. (2011). What is an Engineering? Implications of Elementary School Student Conceptions for Engineering Education. Journal of Engineering Education, 100(2), 304-328.
Capobianco, B. M., Yu, J. H., & French, B. F. (2015). Effects of Engineering Design-based Science on Elementary School Science Students’ Engineering Identity Development across Gender and Grade. Research in Science Education, 45(2), 275-292.
Chanprasert, S. (2014). STEM Education and Learning in 21st Century. IPST Magazine, 42(186), 3-5. (in Thai)
Cotabish, A., Dailey, D., Robinson, A., & Hughes, G. (2013). The Effects of a STEM Intervention on Elementary Students’ Science Knowledge and Skills. School Science and Mathematics, 113(5), 251-226.
Crismond, D. (2013). Design Practices and Misconceptions. The Science Teacher, 80(1), 50-54.
Crismond, D. P. & Adams, R. S. (2012). The Informed Design Teaching and Learning Matrix. Journal of Engineering Education, 101(4), 738-797.
Dankenbring, C. & Capobianco, B. M. (2016). Examining Elementary School Students’ Mental Models of Sun-Earth Relationships as a Result of Engaging in Engineering Design. International Journal of Science and Mathematics Education, 14(5), 825-845.
DeBoer, G. E. (2000). Scientific Literacy: Another Look at Its Historical and Contemporary Meanings and Its Relationship to Science Education Reform. Journal of Research in Science Teaching, 37(6), 582-601.
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the Norms of Scientific Argumentation in Classrooms. Science Education, 84(3), 287-312.
Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering Design Thinking, Teaching, and Learning. Journal of Engineering Education, 94(1), 103-120.
Edelson, D. C., Gordin, D. N., & Pea, R. D. (1999). Addressing the Challenges of Inquiry-Based Learning through Technology and Curriculum Design. The Journal of the Learning Sciences, 8(3&4), 391-450.
English, L. D. (2016). STEM Education K-12: Perspectives on Integration. International Journal of STEM Education, 3(3), DOI: 10.1186/s40594-016-0036-1.
English, L. D. & King, D. T. (2015). STEM Learning through Engineering Design: Fourth-grade Students’ Investigations in Aerospace. International Journal of STEM Education, 2(14), 1-18.
Fortus, D., Dershimer, R. C., Krajcik, J., Marx, R. W., & Mamlok-Naaman, R. (2004). Design-Based Science and Student Learning. Journal of Research in Science Teaching, 41(10), 1018-1110.
Fortus, D., Krajcik, J., Dershimer, R. C., Marx, R. W., & Mamlok-Naaman, R. (2005). Design-Based Science and Real-World Problem-Solving. International Journal of Science Education, 27(7), 855-879.
Homhol, P., & Kanjanasakda, Y. (2009). Need for and Lack of Engineering Workforce in Thailand’s Industrial Estates. University of the Thai Chamber of Commerce Journal, 29(3), 67-83. (in Thai)
Hurd, P. D. (1958). Scientific Literacy: Its Meaning for American Schools. Educational Leadership, 16(1), 13-16, 52.
Institute for the Promotion of Teaching Science and Technology. (2014). STEM Education. Retrieved December 12, 2016, from https://www.stemedthailand.org/wp-content/uploads/2015/03/Intro-to-STEM.pdf (in Thai)
Kelly, T. R., & Knowles, J. G. (2016). A Conceptual Framework for Integrated STEM Education. International Journal of STEM Education, 3(11), DOI: 10.1186/s40594-016-0046-z.
Kijkuakul, S. (2015). STEM Education. Journal of Education Naresuan University, 17(2), 201-207. (in Thai)
King, D. & English, L. D. (2016). Engineering Design in the Primary School: Applying STEM Concepts to Build an Optical Instrument. International Journal of Science Education, (Online First), DOI: dx.doi.org/10.1080/09500693.2016.1262567.
Kolodner, J. L., Camp, P. J., Crismond, C. D., Fasse, B., Gray, J., Holbrook, J., Puntambekar, S., & Ryan, M. (2003). Problem-Based Learning Meets Case-Based Reasoning in the Middle-School Science Classroom: Putting Learning by DesignTM into Practice. The Journal of the Learning Sciences, 12(4), 495-547.
Korur, F., Efe, G., Erdogan, F., & Tunc, B. (2017). Effects of Toy Crane Design-based Learning on Simple Machines. Journal of Science and Mathematics Education, 15(2), 251-271.
Lave, J. & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. New York: Cambridge University Press.
Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful Assessment of Learners’ Understandings about Scientific Inquiry—
The Views about Scientific Inquiry (VASI) Questionnaire. Journal of Research in Science Teaching, 51(1), 65-83.
Mehalik, M. M., Doppelt, Y., & Schunn, C. D. (2008). Middle-school Science through Design-based Learning versus Scripted Inquiry: Better Overall Science Concept Learning and Equity Gap Reduction. Journal of Engineering Education, 97(1), 71-85.
Mortimer, E. & Scott, P. (2003). Meaning Making in Secondary Science Classroom. Maidenhead: Open University Press.
Mosborg, S., Adams, R., Kim, R., Atman, C. J., Turns, J., & Cardella, M. (2005). Conceptions of the Engineering Design Process: An Expert Study of Advanced Practicing Professionals. Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition. Portland, Oregon: American Society for Engineering Education.
Nadelson, L. S., Callahan, J., Pyke, P., Hay, A., Dance, M., & Pfiester, J. (2013). Teacher STEM Perception and Preparation: Inquiry-Based STEM Professional Development for Elementary Teachers. The Journal of Educational Research, 106(2), 157-168.
National Research Council. (1996). The National Science Education Standards. Washington, D.C.: The National Academy Press.
National Research Council. (2011). Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics. Washington, D.C.: The National Academies Press.
National Science and Technology Development Agency. (2014). Overcoming Middle Income Trap. Retrieved December 12, 2016, from https://www.nstda.or.th/news/19435-middle-income-trap (in Thai)
NGSS Lead States. (2013). Next Generation Science Standards: For States, by States. Washington, D.C.: National Academy of Sciences.
Organisation for Economic Cooperation and Development. (2013). PISA 2015: Draft Science Framework. Retrieved December 12, 2016, from https://www.oecd.org/pisa/
pisaproducts/Draft%20PISA%202015%20Science%20Framework%20.pdf
Park, D., Park, M., & Bates, A. B. (2016). Exploring Young Children’s Understanding about the Concept of Volume through Engineering Design in a STEM Activity: A Case Study. International Journal of Science and Mathematics Education, (Online First), DOI: 10.1007/s10763-016-9776-0.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a Scientific Conception: Toward a Theory of Conceptual Change. Science Education, 66(2), 211-227.
Prasertsan, S. (2015). STEM Education: Thai Education’s New Challenges. Songkhla: Numsilp Advertise. (in Thai)
Prasertsan, S. (2016). STEM Education: Problems from Engineering Design Processes. Songkhla: Numsilp Advertise. (in Thai)
Ramasuta, N., & Rohitsthean, B. (2016). Thailand Education 4.0 in Educational Contexts for Sustainable Development. Retrieved December 12, 2016, from https://www.moe.go.th/
websm/2016/aug/354.html (in Thai)
The Secretariat of the House of Representatives. (2016). Academic Paper: Thailand 4.0. Retrieved December 12, 2016, from https://library2.parliament.go.th/ejournal/content_af/2559/jul2559-5.pdf (in Thai)
Vygotsky, L. (1978). Mind in Society: The Development of Higher Psychological Processes. Cambridge: Harvard University Press.
Wang, H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM Integration: Teacher Perceptions and Practice. Journal of Pre-College Engineering Education Research, 1(2), 1-13.
Wendell, K. B. & Lee, H. (2010). Elementary Students’ Learning of Materials Science Practices through Instruction Based on Engineering Design Tasks. Journal of Science Education and Technology, 19(6), 580-601.
Wendell, K. B. & Rogers, C. (2013). Engineering Design-Based Science, Science Content Performance, and Science Attitudes in Elementary School. Journal of Engineering Education, 102(4), 513-540.
Wenger, E. (1998). Communities of Practice: Learning, Meaning, and Identity. New York: Cambridge University Press.
Wertsch, J. V. (1985). Vygotsky and the Social Formation of the Mind. Cambridge: Harvard University Press.
Williams, P. J. (2011). STEM Education: Proceed with Caution. Design and Technology Education, 16(1), 26-35.
Yager, R. E. (1991). The Constructivist Learning Model: Towards Real Reform in Science Education. The Science Teacher, 58(6), 52-57.