Effect of Calcium to Phosphorus Ratios in Concentrate on Milk Production in Dairy Cows

Sasitorn Jorjong* Dr. Chalong Wachirapakorn**
Metha Wanapat*** Ngarmit Nontaso****

ABSTRACT

This experiment was conducted to investigate the effect of calcium to phosphorus ratios on milk production in dairy cows. Five Holstein Friesian cows were arranged according to a 5x5 Latin square design. The calcium (Ca) to phosphorus (P) (Ca:P) ratio in concentrate was as follows: 1:1, 2.5:1, 4:1, 5.5:1 and 7:1. Cows were offered urea-treated rice straw as roughage source ad libitum. The results of the experiment revealed that total dry matter intake of cows fed Ca:P ratio at 1:1 ~ 7:1 were not significantly different among treatments (P>0.05). Digestion coefficients of dry matter, organic matter and crude protein of dairy cattle fed Ca:P ratio at 5.5 were significantly lower (P<0.05) than those in dairy cattle fed Ca:P ratio at 1:1, 2.5:1, 4:1 and 7:1. Urine pH were significantly different (P<0.05) and linearly increased (P<0.01) as ratios of Ca:P was increased. Milk production, 3.5% fat corrected milk (FCM) and milk compositions were not significantly different among treatments (P>0.05), but milk protein production (3.02, 3.20, 3.14, 3.19 and 2.97) were significantly different among treatments (P<0.05). In conclusion, it can be concluded that increase in the ratio of Ca:P from 1:1 to 7:1 had no effect on milk yield, but milk protein production and total dry matter intake tend to be decreased if Ca:P ratio in concentrate was greater than 5.5:1.
บทนำ

ในอากาศโคมนอมอ่อนนิ่งจากอากาศปิยฝั่งและอากาศต้นทางส่งให้ร่างกายและร่างกายมีความต้านทานต่อโรคต่าง ๆ ที่เกิดจากอากาศที่จัดเป็นต้องได้รับจะอยู่อยู่ความต้านทานต่อต้นทาง ที่จะทำให้ระบบการนอกสิ่งมีสารที่มีความต้องการหรือจะกับใจไม่ดีในที่ที่ไม่เหมาะสม จะทำให้เกิดอาการขาด (deficiency) หรือเกิดการเป็นพิษ (toxicity) ซึ่งส่งผลเสียต่อสุขภาพและการต่อเนื่องของลม (นร. และฉลอง, 2533) โดยทั่วไปอากาศโคมนอมอ่อนที่จะมีแรงดุษฎีบดต่าง ๆ ปรับปรุงด้วยกันในปริมาณการจ่ายเนื่องด้วยอากาศ โดยมีความอาจไม่รับแรงดุษฎีบดที่ถึงโดยตรงหรือเศษส่วนที่ติดอยู่ตามเอนกประสงค์หรือพื้นที่ปรับปรุงดุษฎีบดส่งอย่างเพียงพอที่จะหล่อเลี้ยงการต่อเนื่องและการต่อเนื่องของลมได้โดยประสิทธิ์ได้หรือไม่แก้ไขปัญหาทางการกำจัดที่ชัดเจน และปริมาณอากาศเตรียมและอากาศช่วยกันรับ ความเป็นประโยชน์หรือเรื่องคุณค่านั้น ๆ สามารถของความต้องการในการรับผลผลิตภาวะทางสุขภาพ สภาพแวดล้อม คุณสมบัติโดยทั่วไปของตัวเองแล้วจะถูก ที่ชัดเจนหรือความเป็นพิษของเรื่องราวหรือสารอาหารต่าง ๆ ที่มีปฏิกิริยาเป็นมันมีภาพเป็นลีน ด้านลบ (antagonism) ดังนั้นควรจะต้องการให้ความสวยงามของอากาศในอากาศโคมนอมอ่อนเก็บมากขึ้น (ฉลอง, 2540)

แคสเตียม (calcium, Ca) และฟอสฟอรัส (phosphorus, P) ถือเป็นเรื่องดุษฎีบดที่มีความจำเป็นมากในโคมนอมและเป็นองค์ประกอบที่สำคัญในเนื้อเยื่อต่าง ๆ แคสเตียม 0.12 เปรียบเช่นและฟอสฟอรัส 0.09 เปรียบเช่น ในภาวะที่โคมนอมให้เนื้อเยื่อหรือถูกรูภายในข้อต่ออากาศให้เนื้อเยื่อมีสูงสุดแคสเตียมและฟอสฟอรัสมาก และถ้าไม่ได้รับการเสริมในอากาศยังเพียงพอจะทำให้มีปัญหากระดูกกรรไกรหรือโรคเช่น ๆ ตามนี้ เรื่อยมาถึงกายโรคโรคต่อเนื่องแคสเตียมในเนื้อเยื่อต่อเนื่องและมีผลกระทบให้กับผลิต (McDowell, 1992) อย่างไรก็ตามสัดส่วนแคสเตียมต่อฟอสฟอรัส 1:1

ในอากาศโคมนอมอ่อน (Stott, 1965) หรือสัดส่วน 1:3:3 ในชั้นที่เหนือ (Boda and Cole, 1954 ถึงเรียก Beitz et al., 1973) สามารถป้องกันการเกิดโรคในช่วงใหม่ต่อไปได้ จากการศึกษาของ Dowe et al. (1957); Wise et al. (1963); Ricketts et al. (1970) พบว่าเมื่อไอมีสัดส่วนของแคสเตียมต่อฟอสฟอรัสสูง ๆ ในอากาศทำให้ผลของการเจริญเติบโตและความสามารถในการย่อยอาหารได้ ผลสัมพันธ์ระหว่าง ๆ ที่เกี่ยวกับการผลิตอาการเจริญเติบโตในช่วงสัมพันธ์ต่อฟอสฟอรัส 8:1-14:1 แสดงความกับรายงานของ Miller (1983) ถ้าถึงใด ลงกรณ์ (2537) และ ARC (1980) พบว่าสัดส่วนแคสเตียมต่อฟอสฟอรัสที่เหมาะสมโดยไม่เกิดผลกระทบใด ๆ เมื่อสัดส่วนอยู่ในช่วง 1:1-7:1 และ Wise et al. (1963) พบว่าอัตราการเจริญเติบโตลดลงในสิ่งมีอยู่ได้รับอาหารที่มีสัดส่วนแคสเตียมต่อฟอสฟอรัสน้อยกว่า 1:1 แต่ยังมีก็ไม่มีการย้ายอันดับที่ขั้นตอน และอาจเป็นไปได้ว่าบางสัดส่วนของแคสเตียมต่อฟอสฟอรัส ในการเติบโตไปเพิ่มความต้องการฟอสฟอรัสจะไปลดการดูดซึม จากรายงานของ Young et al. (1966) พบว่าสัดส่วนแคสเตียมต่อฟอสฟอรัส 1:1-10:1 ไม่มีผลต่อประสิทธิภาพการเจริญเติบโตของฟอสฟอรัสในและบางรายงานกล่าวว่าที่สัดส่วนแคสเตียมต่อฟอสฟอรัสสูง ๆ อาจมีผลรวมกับการผสมไม่ได้ในใด (Higgett, 1959 ถึงเรียกโดย Steeves et al., 1971) อย่างไรก็ตามถ้าไม่มีรายงานนี้สัดส่วนที่เหมาะสมของแคสเตียมต่อฟอสฟอรัสในอาหารสัตว์ในประเทศใด ดังนั้นในการทดลองนี้จะมีวัตถุประสงค์เพื่อศึกษาสัดส่วนของแคสเตียมต่อฟอสฟอรัสในอาหารที่มีผลต่อการให้ผลสดและการใช้ประโยชน์ของอาหารโคมนอม

อุปกรณ์และวิธีการทดลอง

การศึกษาครั้งนี้เป็นการศึกษาเฉพาะของสัดส่วนแคสเตียมต่อฟอสฟอรัส 5 สัดส่วน ประกอบด้วย 5 กลุ่มการทดลอง (treatment) โดยมีสัดส่วนแคสเตียมต่อฟอสฟอรัสในอาหารขั้นต่ำไปเป็น 1:1, 2.5:1, 4:1, 5:1 และ 7:1 ตามลำดับ โดยวางแผนการทดลองแบบ
การเก็บตัวอย่างนมสุกเก็บบุคคลสัตว์ทดลองในช่วงการทดลอง เพื่อหาค่าประมาณที่สำคัญได้แก่โปรตีน (protein)，ไขมัน (fat)，เลนมอล (lactose)，ออกเจริญแท้ (total solid，TS) และของแข็งไม่ว่าจะเป็นโซลิด (solids — not fat，SNF) ด้วยเครื่อง milko scan (Model 133 V3 7 GB)

ที่ทำการเก็บตัวอย่างเสียดออกจากหลอด直径ที่ ค่อ (jugular vein) จากโคนแต่ละตัว จำนวน 10 ผลลิทิค ในชั่วโมงที่ 4 หลังการให้อาหารในวันสุดท้ายในแต่ละช่วงการทดลอง แล้วนำมันไปเก็บเรียก (centrifuge) ที่ความเร็ว 3,000 รอบต่อนาที ใช้เวลา 10 นาที และเก็บส่วนบนของเสียดิ (supernatant) ไว้ทุก 20 องศาเซลเซียส เพื่อวิเคราะห์คลาร์ทูร์ในโลหะในกระแสเสียดิ (blood urea nitrogen，BUN) โดยใช้เครื่อง Hitachi Kinetic UV test model BM 717/911 ตามวิธีการของ MacKay and MacKay (1972) และวิเคราะห์คลาเร์ตูร์และของแข็งสัตว์ (AOAC，1984)

ส่วนเก็บตัวอย่างของเหลวจากกระเพาะเรื่อนโดยใช้ stomach tube รวมกับ vacuum pump จากโคนแต่ละตัวในช่วงล่าสุดจากการเจาะเสียดิในชั่วโมงที่ 4 แล้วทำการวัดความเป็นกรด—ด่าง (pH) ที่ถังตัวเครื่องวัด pH meter แบบสวน (Orion Research model SA 230) จากนั้นสุ่มเก็บประมาณ 20 ผลลิทิค นำไปในเครื่องด้วยความเร็ว 3,000 รอบต่อนาที ใช้เวลา 15 นาที เพื่อเก็บส่วนบนเสียดิในคลาร์ทูร์อุณหภูมิประมาณ −20 องศาเซลเซียส เพื่อนำไปวิเคราะห์คลาเร์ตูร์และของแข็งสัตว์ (AOAC，1984)

ผลกระทบของการกินและวิธีการ

ปริมาณการกินที่เหมาะสมของอาหารข้นและอาหารหวานในแต่ละกลุ่มการทดลอง พบว่าไม่มีความแตกต่างทางสถิติ (P > 0.05) (Table 2) แต่มีแนวโน้มว่าสัดส่วนแคลเซียมต่อพอลิฟอร์ซิดที่ตั้งไว้ 1:1-5.5:1 มีปริมาณการกินที่เพิ่มขึ้น และลดลงเมื่อถึงสัดส่วนแคลเซียมต่อพอลิฟอร์ซิด 7:1 อาจเนื่องจากว่าสัดส่วนแคลเซียมต่อพอลิฟอร์ซิด 7:1 มีปริมาณแคลเซียมคาร์บอกซิลในอาหารข้นปริมาณที่ค่อนข้างสูงอาจส่งผลต่อการทานของ ชีวินท์ในกระเพาะรูคีน ผลดังกล่าว บวกกับรายงานของ Rogers et al. (1982) พบว่าการเสริมให้สูบปู (limestone) ที่ระดับ 2.4 เปอร์เซ็นต์ ในการผ่านผา (basal diet) ส่งผลให้การกินได้ลดลง เช่นเดียวกับการรายงานของ Ricketts และ Campbell (1970) โดยทำการทดลองในครู พบว่าที่สัดส่วนแคลเซียมต่อพอลิฟอร์ซิด 8:1 มีผลให้การกินได้ลดลงแต่ต่ำกว่าระดับ น้ำสาดปู (P < 0.05) เมื่อเปรียบเทียบกับกลุ่มการทดลองที่ได้รับสัดส่วนของแคลเซียมต่อพอลิฟอร์ซิด 1:1 และ 4:1

สัมประสิทธิ์ของการกินได้ของวัวหน้า อินทรีย์ วัสดุและโปรตีนบางส่วนในอาหารข้นที่มีสัดส่วนแคลเซียมต่อพอลิฟอร์ซิด 5:5:1 มีต่ำสุดแต่ต่างทางสถิติอย่าง มีนักสัตว์ (P > 0.05) แต่สัดส่วนแคลเซียมต่อพอลิฟอร์ซิด ไม่มีผลต่อสัมประสิทธิ์การกินได้ของวัวที่ไม่ละลายในสารละลายเป็นก้อน เยื่อไส้ที่ไม่ละลายในสารละลาย ที่เป็นกรด และผลลัพธ์ที่พบ Rogers et al. (1982) พบว่าเมื่อมีการเสริมให้น้ำสาดปูในอาหารผ่านผาทำให้การกินได้ของอินทรีย์ วัสดุจะเพิ่มขึ้น เนื่องจากเกิดการเปลี่ยนแปลงในความสามารถในการกินได้ของเพียง และเยื่อไส้ที่ไม่ละลายในสารละลายเป็นก้อนได้เป็นต้น การได้รับอาหารข้นในปริมาณที่มากกว่า อาจแสดงให้เห็นถึงการยัติเร่งได้ และเมื่อมีการเพิ่มสัดส่วนของแคลเซียมต่อพอลิฟอร์ซิต ซึ่งเป็นการเพิ่มระดับความเป็นกรด-ด่าง ทำให้เพิ่มการกินได้ของเยื่อไส้ที่ไม่ละลายในสารละลายเป็นก้อนและ เยื่อไส้ที่ไม่ละลายในสารละลายที่เป็นกรด ส่วน Wheeler (1980) รายงานว่าเมื่อมีการเสริมน้ำสาดปูที่ระดับ 2.71เปอร์เซ็นต์ในอาหารผสมส่วนเร่ง (total mixed ration, TMR) ทำให้การกินได้เพิ่มขึ้นแต่ต่ำกว่าผลลัพธ์ของการกินได้ของ โปรตีนเท่านั้นมีผลต่อ

ใน Table 3 แสดงค่าคำนวณผลิตในกระแสเลือด และในทางจากกระเพาะรูคีนพบว่าค่าความชันของยุคในกระแสเลือดไม่มีความแตกต่างทางสถิติ (P > 0.05) โดยพบว่าตูสัตว์ส่วนใหญ่ค่อนข้างระหว่าง 24.4-25.8 มิลลิกรัมเปอร์เซ็นต์ อยู่ในกรอบงานของ Mead (1953) ที่พบว่าระดับความชันของยุคในกระแสเลือดกลับมาได้ thấp ไม่ว่าจะเป็นการดูดซึมผ่านกระเพาะรูคีนหรือผ่านทางภายนอก จึงทำให้ผลการควบคุมระดับยุคในกระแสเลือดได้ต่ำกว่าระดับ ที่ทำให้ผลการอยู่ในสภาพที่ดีกว่าในกระเพาะรูคีน

ค่าความเป็นกรด-ด่างของเหลวในกระเพาะรูคีน พบว่ามีความแตกต่างทางสถิติ (P > 0.05) โดยพบว่าที่สัดส่วนของแคลเซียมต่อพอลิฟอร์ซิตที่ 2.5:1 มีค่า ตัวคลื่นน้อยและลดลงกว่าของ Russell et al. (1980) และ Wheeler และ Noller (1977) แต่พบว่ามีการเสริมแคลเซียมคาร์บอกซิลในอาหารทำให้ค่าความเป็นกรด-ด่างของเหลวในกระเพาะรูคีนมีค่าตัวคลื่นขึ้น เช่นเดียวกับรายงานของ Rogers et al. (1982) และ Wheeler et al. (1981) ที่รายงานว่าค่าความเป็นกรด-ด่างในกระเพาะรูคีนมีค่าตัวคลื่นขึ้นเมื่อมีการเสริมน้ำสาดปูที่ผ่าไปในอาหารด้วย Schaefer et al. (1982) ยืนยันว่า เมื่อมีการ เพิ่มแคลเซียมบนข้นจะมีการละลายด้วย และทำปฏิกิริยาได้อย่างรวดเร็ว ซึ่งระดับความเป็นกรด-ด่างสูงที่ระดับ 5.5 อย่างไรก็ตามความสามารถในการละลายได้และ บทบาทของเลือดอย่างรวดเร็วมีระดับความเป็นกรด-ด่างเพิ่มเป็น 6.5 แต่สำหรับรายงานของ Clark et al. (1988) และ Nicholson et al. (1963) กล่าวว่าการเสริมแคลเซียม คาร์บอกซิลในอาหารไม่มีผลต่อการเปลี่ยนแปลงความเป็นกรด-ด่างของเหลวในกระเพาะรูคีนที่เนื่องจากค่าความเป็นกรด-ด่างที่เหมาะสมในการกระเพาะรูคีนมีค่าตัวคลื่นกว่า
5.5 จึงไม่มีผลต่อการละลายตัวของแคลเซียมคาร์บอเนต ขณะนี้จึงไม่มีผลต่อความเป็นกรด-ด่างในกระเพาะโรมน ความเป็นกรด-ด่างของแคลเซียมคาร์บอเนต (Table 3) โดยความเป็นกรด-ด่างมีค่าสูงต่ำสุดของแคลเซียม ต่อฟอสฟอรัสที่เพิ่มขึ้น เนื่องจากมีการเพิ่มระดับของ แคลเซียมไอออน (Ca²⁺) ซึ่งประจุบวกนี้ส่งผลให้ความ เป็นกรด-ด่างสูงขึ้นตาม สอดคล้องกับรายงานของ Frederson et al. (1988) ซึ่งกล่าวว่ากรดที่มีประจุบวก มากมีแนวโน้มให้ผลที่ได้รับอาจส่งผลก่อนถึงการ เป็นกรด-ด่างต่ำลงในภาวะ (mild metabolic alkalosis) ซึ่งสาเหตุที่ได้คือระดับความเป็นกรด-ด่างของปัสสาวะ มีตกต่ำลง

ใน Table 4 แสดงผลของแคลเซียมคาร์บอเนต ต่อฟอสฟอรัสต่อปริมาณน้ำที่ได้รับปริมาณ ปรับระดับใน (3.5% FCM) และองค์ประกอบของ น้ำในส่วนของไอออน แคลเซียม ของแซนท์ไม้ไม่ใหญ่และแคลเซียมที่มีความแตกต่างทางสถิติ (P<0.05) แต่แคลเซียมซึ่งคงอยู่ในน้ำนั้นมีค่าสูงสุด เมื่อเปรียบเทียบการทานน้ำที่มีสัดส่วนแคลเซียมต่อ ฟอสฟอรัส 5.5:1 จากรายงานของ Rogers et al. (1982) พบว่าเมื่อมีการเสริมกันในอาหารทำให้การกินได้ ของแซนท์ไม้ แต่ผลผลิตน้ำมีความแตกต่างทางสถิติ และให้ผลเช่นเดียวกับรายงานของ Eisdale and Satter (1972) และ Clark et al. (1988) พบว่าการเสริม แคลเซียมคาร์บอเนตไม่ได้ผลกับปริมาณน้ำปรับระดับ ไม้สูง (4% FCM) และสุราบด้านไม้ในน้ำนั้นมีผลค่า ต่ำ ๆ เพิ่มต่ำสุดของแคลเซียมต่อฟอสฟอรัสที่ เพิ่มขึ้น อาจเกิดจากแคลเซียมบางส่วนมีการค้นหา กันไอออน ส่งผลให้เกิดการไหลผ่าน (by pass) ไปยังสมอง ของสาหร่ายนี้เพิ่มมากขึ้น ส่งผลให้ปริมาณไอออนในน้ำนั้น เพิ่มสูง ลอง (2541) กล่าวว่าโดยทั่วไปแล้วไม้ใน น้ำนั้นมีการสั่นสะเทือนการใช้งานในต่อมลำน้ำ ซึ่งมี จากกล้าและหลักกิจ การคลิกไลและผลักวิธีการจาก กระเพาะโรมน ไม้จากอาหาร และไม้มีจากการ

ความแม่นยำของแคลเซียมในชีวิต (2.39, 2.26, 2.25, 2.31 และ 2.31 มิลลิโวลต์ดิสิตร์) ไม่มีความ แตกต่างทางสถิติ (P>0.05) ความแม่นยำของฟอสฟอรัส ในชีวิต (2.62, 2.38, 2.80, 2.96 และ 3.05 มิลลิโวลต์ ดิสิตร์) พบว่ามีค่าสูงต่ำสุดแคลเซียมต่อฟอสฟอรัส ที่เพิ่มขึ้นโดยมีความสัมพันธ์แบบเส้นตรง (P<0.05) โดย พบแคลเซียมมีค่าอยู่ในช่วงปกติคือ 2.2-2.5 มิลลิโวลต์ ดิสิตร์ แต่ฟอสเฟตดิสิตร์มีค่าสูงกว่าปกติ 1.3-2.6 มิลลิโวลต์ดิสิตร์ (NRC, 2001) จากรายงานของ Dowe et al. (1957) ที่มีการทดลองในสุนัขได้ที่ให้ปริมาณ แคลเซียมที่มากก็ไม่ได้ให้ปริมาณฟอสฟอรัสที่ต่ำที่ พาหนะไม่มีการเปลี่ยนแปลงของแคลเซียมในชีวิต ส่งผ่าน รายงานของ Ricketts and Campbell (1970) ในเครื่องที่ ให้สัดส่วนแคลเซียมต่อฟอสฟอรัส 1:1, 4:1 และ 8:1 พบว่ามีสัดส่วนแคลเซียมต่อฟอสฟอรัส1:1ให้แคลเซียม ในชีวิตที่ต่ำสุดส่วนแคลเซียมต่อฟอสฟอรัส 4:1 และ 8:1 อย่างมีนัยสำคัญ (P<0.05) และจากรายงานของ Nocek et al. (1983) ที่มีการทดลองในโคกับกระดูก แคลเซียมเป็น 1.15 และ 0.77 เบอร์เซ็นต์ พบว่าที่ระดับ 1.15 เบอร์เซ็นต์มีปริมาณฟอสเฟตสูงกว่าร้อยละ 77 เบอร์เซ็นต์ ซึ่ง Steven et al. (1971) กล่าวว่า ปริมาณแคลเซียมในพรานสามารถควบคุมอย่างใกล้ชิดโดย กลไกควบคุมความสมดุล (homeostasis) และไม่มีผล จากปริมาณแคลเซียมที่ข้นเข้าไป สำหรับการควบคุม ระดับฟอสเฟตในชีวิตนั้น อาจไม่เป็นที่ทราบแน่นอน

ความแม่นยำของแคลเซียม (5.55, 5.94, 8.01, 13.1 และ 13.4 มิลลิโวลต์ดิสิตร์) ฟอสเฟต (28.4, 30.4, 26.3, 30.9 และ 30.9 มิลลิโวลต์ดิสิตร์) ใน ของเหลวจากการกระเพาะโรมนนั้นมีค่าเพิ่มตามสัดส่วนของ แคลเซียมต่อฟอสเฟต และมีความสัมพันธ์แบบเส้นตรง โดยที่สังเกตุได้ในช่วงปกติ ตามรายงานของ Duran and Kawashima (1980) โดยการทดลองแคลเซียมและ ฟอสเฟตในชีวิตระดับ 1.9-11.2 และ 1.6-42.0 มิลลิโวล ต่อดิสิตร์ ตามลำดับ
สรุปผลการทดลอง

การให้ไบเตรียมได้รับสูตรอาหารที่มีสัดส่วนของ
แต้มเจ้าและพลัสฟอร์วัตั้งแต่ระดับ 1:1, 2:5:1, 4:1
5.5:1 และ 7:1 พบว่าไม่มีผลต่อปริมาณการกินได้ของ
อาหารทั้งหมด การให้แต้มเจ้าของไบเตรียมและองค์ประกอบ
ของน้ำมันที่เปลี่ยนแปลงได้ และปริมาณการกินได้
โดยพบว่าที่สัดส่วนแต้มเจ้าเดือนฟอร์วัตมากกว่า 5.5:1
ทำให้มีปริมาณลดลง

อ้างอิง

1. ควงกิจการศึกษาโดยใช้วิธีการของฟอร์วัต
ที่แตกต่างกัน เพื่อค้นหาของฟอร์วัตต่อการให้ผลิต
ไบเตรียม

2. การให้ไบเตรียมที่มีอยู่ในสภาพเดียวกันเพื่อให้
ได้ข้อมูลความต้องการที่แท้จริง

3. ควงกิจการทดลองที่ไบเตรียมในระยะต่ำด้วย
และหลังดีด

กิจกรรมประยุกต์

ภูริจัยโดยขอบพระคุณอนุญาตสมเพ็ญบริษัท
ขอนแก่นที่ให้ความอนุเคราะห์ในการวิเคราะห์องค์ประกอบ
น้ำมัน นันทิติวิทยาลัยที่ให้ข้อมูลบัญชีในการทำ
วิทยานิพนธ์ และรวบรวมข้อมูลอักษรย่อที่ให้ความ
รวมมีและให้ความช่วยเหลืองานวิจัยในครั้งนี้ สำเร็จ
ลุ่นไปได้ด้วย

เอกสารอ้างอิง

เพลง วิชาการ. 2540. บทบาทและความสำคัญของ
เครื่องสถาน فيอาหารในประเทศไทย.
วรสารไบเตรียม. 25: 176.

เพลง วิชาการ. 2541. ไบเตรียมและอาหารให้อาหาร
สัตว์เดียวสืบเนื่องต่อ. ขอนแก่น: ภาควิชา
สัตวศาสตร์ คณะเกษตรศาสตร์ มหาวิทยาลัย
ขอนแก่น.

เมา วรรณพันธ์ และลอง วิชาการ. 2533. เทคนิค
การให้อาหารไบเตรียมและไบเตรียม:
ผักปริมาณสูง

เพลง รีจิส. 2537. แช่ธุรกิจอาหาร น้ำ และ
ผลของไบเตรียมในจัดที่ต้องรู้และสรุป.
วิทยานิพนธ์ปริญญาตรีวิทยาศาสตร์.
มหาบัณฑิต

Agricultural Research Council. 1980. The Nutrient
Requirements of Ruminant Livestock. Slough,
England: Commonwealth Agricultural
Bureaux.

The Association of Official Analytical
Chemistry, Washington D.C., U.S.A.

Effects of calcium to phosphorus ratio in the
diet of dairy cows on incidence of parturient
paralysis. J. Dairy Sci. 57: 49.

Effect of supplemental fish meal on lactation
and reproductive performance of dairy cows.
J. Dairy Sci. 77: 3058.

Clark, J.H.; Pleegge, A.W.; Davis, C.L. and McCoy,
G.C. 1988. Effects of calcium carbonate on
ruminal fermentation nutrient digestibility and

Dowe, T.W.; Matsushima, J. and Arthaud, V.H. 1957.
The effects of adequate phosphorus in
-growing rations for beef calves. J. Anim.
Sci. 16: 811.

Physiology and Metabolism in Ruminant.
Ruckebusch, Y. and Thivend, P. (eds.),
Lancaster, MTP press. 375.

Esdale, W.J. and Satter, L.D. 1972. Manipulation of
rumen fermentation. IV. Effect of altering ruminal pH on volatile fatty acid production.

Characterization of acid-base disturbances and
effects on calcium and phosphorus balances
of dietary fixed ions in pregnant or lactating

Table 1. Ingredient and chemical composition of concentrate in the experiment.

<table>
<thead>
<tr>
<th>Ingredient, %DM</th>
<th>Ca:P ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1:1</td>
</tr>
<tr>
<td>Cassava chip</td>
<td>50.0</td>
</tr>
<tr>
<td>Broken rice</td>
<td>10.0</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>10.0</td>
</tr>
<tr>
<td>Dried brewer grain</td>
<td>15.0</td>
</tr>
<tr>
<td>Rice bran</td>
<td>10.0</td>
</tr>
<tr>
<td>Urea</td>
<td>2.00</td>
</tr>
<tr>
<td>Salt</td>
<td>1.00</td>
</tr>
<tr>
<td>Dicalcium</td>
<td>0.75</td>
</tr>
<tr>
<td>Premix</td>
<td>1.25</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Chemical composition in concentrate

<table>
<thead>
<tr>
<th></th>
<th>%DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM, %</td>
<td>88.4</td>
</tr>
<tr>
<td>GE, Mcal ME/kgDM</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Chemical composition in concentrate

<table>
<thead>
<tr>
<th></th>
<th>%DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>14.4</td>
</tr>
<tr>
<td>OM</td>
<td>91.0</td>
</tr>
<tr>
<td>Ca</td>
<td>0.38</td>
</tr>
<tr>
<td>P</td>
<td>0.37</td>
</tr>
</tbody>
</table>

DM=dry matter, GE=gross energy, CP=crude protein, OM=organic matter, Ca=calcium, P=phosphorus
Table 2. Effect of dietary treatment on total feed intake and coefficient digestibility.

<table>
<thead>
<tr>
<th>Item</th>
<th>Ca:P ratios</th>
<th>Contrasts 2/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1:1</td>
<td>2.5:1</td>
</tr>
<tr>
<td>TDMI, kg/d</td>
<td>11.3</td>
<td>11.8</td>
</tr>
<tr>
<td>%BW</td>
<td>3.08</td>
<td>3.12</td>
</tr>
<tr>
<td>g/kgW 0.75</td>
<td>135.0</td>
<td>137.2</td>
</tr>
<tr>
<td>Digestible coefficient, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>65.1ab</td>
<td>65.0a</td>
</tr>
<tr>
<td>OM</td>
<td>68.8ab</td>
<td>69.4a</td>
</tr>
<tr>
<td>CP</td>
<td>61.3abc</td>
<td>64.1a</td>
</tr>
<tr>
<td>NDF</td>
<td>52.1</td>
<td>48.2</td>
</tr>
<tr>
<td>ADF</td>
<td>45.8</td>
<td>42.6</td>
</tr>
<tr>
<td>GE</td>
<td>61.3</td>
<td>60.6</td>
</tr>
</tbody>
</table>

* Values on the same row with different superscripts are significantly different (P<0.05)

2/ L=linear, Q=quadratic, C=cubic, Qu=quartic, g/kgW 0.75 = gram/kilogram metabolic weight
ns=not significant (P>0.05), SEM = standard error of the means., TDMI=total dry matter intake, DM=dry matter, OM=organic matter, CP=crude protein, NDF=neutral-detergent fiber, ADF=acid-detergent fiber, GE=gross energy
Table 3. Effect of dietary treatment on calcium, phosphorus in serum and rumen fluid, ruminal pH, blood urea nitrogen (BUN) and urine pH.

<table>
<thead>
<tr>
<th>Item</th>
<th>Ca:P ratios</th>
<th>Contrasts 21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1:1</td>
<td>2.5:1</td>
</tr>
<tr>
<td>Serum Ca, mM</td>
<td>2.39</td>
<td>2.26</td>
</tr>
<tr>
<td>Serum Pi, mM</td>
<td>2.62abc</td>
<td>2.38a</td>
</tr>
<tr>
<td>Rumen Ca, mM</td>
<td>5.55a</td>
<td>5.94a</td>
</tr>
<tr>
<td>Rumen Pi, mM</td>
<td>28.4c</td>
<td>30.4c</td>
</tr>
<tr>
<td>Rumen pH</td>
<td>6.74a</td>
<td>6.47b</td>
</tr>
<tr>
<td>BUN, mg%</td>
<td>25.8</td>
<td>24.4</td>
</tr>
<tr>
<td>Urine pH</td>
<td>7.57a</td>
<td>7.70b</td>
</tr>
</tbody>
</table>

abc Values on the same row with different superscripts are significantly different (P<0.05)

L=linear, Q=quadratic, C=cubic, Qu=quartic, ns=not significant (P>0.05)

SEM = standard error of the means.

Table 4. Effect of dietary treatments on milk yield and milk compositions.

<table>
<thead>
<tr>
<th>Item</th>
<th>Ca:P ratios</th>
<th>Contrasts 21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1:1</td>
<td>2.5:1</td>
</tr>
<tr>
<td>Milk yield</td>
<td>13.4</td>
<td>13.0</td>
</tr>
<tr>
<td>3.5%FCM</td>
<td>12.9</td>
<td>12.6</td>
</tr>
<tr>
<td>Fat</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Protein</td>
<td>0.40abc</td>
<td>0.41abc</td>
</tr>
<tr>
<td>Milk compositions, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat</td>
<td>3.31</td>
<td>3.36</td>
</tr>
<tr>
<td>Protein</td>
<td>3.02b</td>
<td>3.20b</td>
</tr>
<tr>
<td>Lactose</td>
<td>4.95</td>
<td>4.94</td>
</tr>
<tr>
<td>Solids-not fat</td>
<td>8.59</td>
<td>8.78</td>
</tr>
<tr>
<td>Total solid</td>
<td>11.9</td>
<td>12.1</td>
</tr>
</tbody>
</table>

abc Values on the same row with different superscripts are significantly different (P<0.05)

ns=not significant (P>0.05)

L=linear, Q=quadratic, C=cubic, Qu=quartic, SEM = standard error of the means.

3.5% fat-corrected milk (3.5%FCM) = \{ (0.432) x (kg of milk) + (16.02) x (kg of fat) \}