Charcoal-Polyurethane Composite Material for Insulation

Authors

  • Ladarat Liampreecha นักศึกษา หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Wimonporm Iamamornphan นักวิทยาศาสตร์ ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Pornnapa Kasemsiri ผู้ช่วยศาสตราจารย์ ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Khanita Kamwilaisak ผู้ช่วยศาสตราจารย์ ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

Keywords:

Black liquor, Lignin, Polyurethane, Composite material

Abstract

This research was to optimized preparation conditions of charcoal-polyurethane composite material for using as an insulator. Charcoal was prepared from lignin which is a major component of black liquor. The composition of lignin was analyzed by CHNS/O analyzer, and found that it was composed of Carbon Nitrogen and Oxygen by 60.93, 5.60, and 0.20% respectively. The charcoal was prepared by carbonized lignin at 385 oC for 1 hr at heating rate 10 oC/min and was applied as the reinforced in polyurethane composite. The compressive stress of the charcoal-polyurethane composite material was found between 0.186-0.645 MPa, and thermal conductivity decreased from 0.466 to 0.149 W/m.K with respect to the increment of the percentage of charcoal from 0 to 20 wt%. The lowest thermal conductivity is 0.149 W/m.K at 20 wt% charcoal. Thermal stability of the material was tested by thermal cycling method at 5-80 oC, 500 cycles. The result shows that there is no deterioration and alteration of charcoal-polyurethane composite material. The thermal stability was confirmed by FT-IR and DSC result at pre- and post-thermal cycling testing, the heat capacity were 37.50 and 36.63J/g, respectively which the difference is not significant.

References

1. Somjate P, Pattana R, Nushanad N, Skuntee S, Rungaroon P. Thermal insulation produced from vetiver fiber and natural rubber latex. Kasetsart Engineering Journal (Thailand) 2007; 61:87–94

2. Chalit A. Polyurethane product quality improvements by using reaction-injection-molding flow analysis [Master Thesis in Mechanical Engineering]. Bangkok: The Graduate School, Kasetsart University; 2006. Thai.

3. Prattana T. Operation strategies for maximizing electrical output of cogeneration system in a pulp mill [Master Thesis of Engineering in Energy Management Technology]. Bangkok: The Graduate School, King Mongkut’s University of Technology Thonburi; 2012. Thai.

4. Office of Industrial Economics. Index Industrial [Online] 2013 [Cited 29 Nov 2014]. Available from: http://
www.oie.go.th/academic/statistics

5. ASTM International. ASTM D1621 - 00 Standard Test Method for Compressive Properties Of Rigid Cellular Plastics [Online] 2014 [Cited 25 Jul 2017]. Available from: https://www.astm.org/DATABASE.
CART/HISTORICAL/D1621-00.htm

6. Zhang C, Wu H, Kessler MR. High bio-content polyurethane composites with urethane modified lignin as filler. Polymer 2015; 69: 52–57.

7. Sameni J, Krigstin S, Sain M. Characterization of lignins isolated from industrial residues and their beneficial uses. BioResources 2016; 11: 8435–8456.

8. Lazzarini A. Activated carbons for applications in catalysis: the point of view of a physical-chemist.
Rendiconti Lincei 2017; 1: 1–14.

9. Dhevi DM, Prabu AA, Kim KJ. Hyperbranched polyester as a crosslinker in polyurethane formation: real-time monitoring using in situ FTIR. Polymer Bulletin 2016; 73: 2867–2888.

10. Ciecierska E, Jurczyk-Kowalska M, Bazarnik P, Kowalski M, Krauze S, Lewandowska M. The influence of carbon fillers on the thermal properties of polyurethane foam. Journal of Thermal Analysis and Calorimetry 2016; 123: 283–291.

11. Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Conversion and Management 2017; 134: 373–381.

12. Lorwanishpaisarn N, Kasemsiri P, Posi P, Chindaprasirt P. Characterization of paraffin/ultrasonic-treated diatomite for use as phase change material in thermal energy storage of buildings. Journal of Thermal Analysis and Calorimetry 2017; 128: 1293–1303.

13. Hoseinabadi M, Naderi M, Najafi M, Motahari S, Shokri M. A study of rigid polyurethane foams: The effect of synthesized polyols and nanoporous graphene. Journal of Applied Polymer Science 2017; 134: 1–6.

Downloads

Published

2019-03-04

Issue

Section

บทความวิจัย