Development of Program for Red Light Running Violation and Helmet Wearing Using Cctv Camera

  • Pasit Wonghabut หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Rujchai Ung-arunyawee ผู้ช่วยศาสตราจารย์ ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Thaned Satiennam รองศาสตราจารย์ ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Watis Leelapatra อาจารย์ ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Piyanut Jantosut นักศึกษา หลักสูตรปรัชญาดุษฎีบัณฑิต สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Jetsada Kumphong นักศึกษา หลักสูตรปรัชญาดุษฎีบัณฑิต สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
Keywords: Red-light running behaviors, Helmet wearing, Road accident, Automatic detection system


The objective of this research is to develop a computer program for detecting traffic red light violation and helmet wearing of motorcyclists using CCTV camera in order to improve law enforcement. The developed program uses video recorded by wide-angle CCTV camera and monitor red light signal. Any vehicles found beyond stop line when red light is detected will activate image capturing process to take images from zoomed CCTV camera. The program is developed using C++ language with OpenCV library for image processing and MySQL for managing the database of captured images. In addition to red light violation detection, the program also helps enforcing helmet wearing on motorcyclists. This is done by using the program to manually review and take snapshot images of recorded video from wide-angle CCTV when motorcyclists without helmet are found. The results show that the program can detect 85% of red light violation cases from various vehicle types during daytime and nighttime. The validation results reveal that the program has 96.3% accuracy. Detection of motorcyclist without helmet is also validated and yields accuracy of 96.3%.


1. World Health Organization. Global status report on road safety. 2015.

2. Jantosut P, Kumphong J, Wonghabut P, Satiennam W, Satiennam T, Ung-arunyawee R.The Evaluation of CCTV
camera enforcement to reduction of red-light running and increase of a helmet use. 13th Thailand road safety seminar:
Invest for sustainable road safety 2017: 73–74. Thai.

3. Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. Proceedings of the 1999 IEEE Computer Vision and Pattern Recognition. 1999; 2: 246 –252.

4. Silva R, Aires K, Veras R. Helmet detection on motorcyclists using image descriptors and classifiers. 27th SIBGRAPI Conference on graphics, patterns and images 2014: 141–148.

5. Solomon C, Breckon T. Fundamentals of Digital Image Processing. A practical approach with examples in Matlab. Wiley-Blackwell: West Sussex; 2011.

6. OpenCV Developers Team: itseez. OpenCV [Online], from 2013.