The design of Power Factor Correction (PFC) Boost Converter Circuit and Phase-shift Full-bridge Inverter Circuit for Electric Vehicle Battery Charger

Authors

  • Chanthy Phok นักศึกษา หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Jaruwat Manerutanaporn อาจารย์ สาขาวิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธนบุรี
  • Nattapong Keanmalee นักวิจัย ห้องปฏิบัติการวิจัย ด้านอิเล็กทรอนิกส์กำลัง สาขาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Pairaya Choeisai ผู้ช่วยศาสตราจารย์ สาขาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Krit Choeisai รองศาสตราจารย์ สาขาวิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

Keywords:

PFC boost converter, Phase-shift full-bridge inverter, EV battery charger.

Abstract

This paper proposes the design of power factor correction (PFC) boost converter circuit and phase-shift full-bridge (PSFB) inverter circuit for electric vehicle (EV) battery charger. The proposed circuit uses single-phase AC source that its structure includes two main circuits are PFC boost converter and PSFB inverter. The study of these circuits designed uses simulation by MATLAB application and actually experiment with the circuit power of 3.2 kW. From the simulation and experimental results illustrate that PFC boost converter part can control the input AC current source to be a sine wave and in-phase with input AC voltage source by using 100 kHz switching frequency. For PSFB inverter part controls by adjusting the phase-shift of gates signal by using 30 kHz switching frequency and it can control the output DC voltage from 0-380V with 9A current.   

References

1. Report A. AN-1973 Benefits and Challenges of High-Frequency Regulators. 2013;(April): 1–7.

2. Pomilio JA, Spiazzi G, Buso S. 09 - IAS00_Spiazzi.pdf. 2000;0(C): 3–8.

3. Abdel-rahman S. PFC Boost Converter Design Guide. 2014;

4. Abdel-rahman S. CCM PFC Boost Converter Design. Infineon white Pap. 2013;(January):1–18.

5. Nussbaumer T, Raggl K, Kolar JW. Design guidelines for interleaved single-phase boost PFC circuits. IEEE Trans Ind Electron. 2009;56(7): 2559–2573.

6. Chen Y, Member S, Chen Y, Member S. Line Current Distortion Compensation for DCM / CRM Boost PFC Converters. 2016;31(3): 2026–2038.

7. Fei Zhang, Jianping Xu. A Novel PCCM Boost PFC Converter With Fast Dynamic Response. IEEE Trans Ind Electron [Internet]. 2011; 58(9):4207–16. Available from: http://ieeexplore.ieee.org/document/5661848/

8. Factor SP, Mode CC. CCM-PFC Standalone Power Factor. 2010;(May): 1–24.

9. Shen M, Qian Z. A novel high-efficiency single-stage PFC converter with reduced voltage stress. IEEE Trans Ind Appl. 2002;38(2): 507–513.

10. De Gussemé K, Van de Sype DM, Van den Bossche APM, Melkebeek JA. Input-current distortion of CCM boost PFC converters operated in DCM. IEEE Trans Ind Electron. 2007;54(2): 858–865.

11. Cheng W, Song J, Li H, Guo Y. Time-varying compensation for peak current-controlled PFC boost converter. IEEE Trans Power Electron. 2015;30(6): 3431–3437.

12. Design and Simulation of Boost Converter for Power Factor Correction and THD Reduction. 2014;3(42): 8462–8466.

13. Hassan TK. A repetitive-PI Current Controller for Boost Single Phase PFC Converters. Energy Power Eng. 2011;3(2): 69–78.

14. Li S, Lee ATL, Tan S-C, Hui SY. Plug-and-Play Voltage Ripple Mitigator for DC Links in Hybrid AC-DC Power Grids With Local Bus-Voltage Control. IEEE Trans Ind Electron [Internet]. 2017;46(c):1–1. Available from: http://ieeexplore.ieee.org/document/7934064/

15. Wang Y, Darwish A, Holliday D, Williams BW. Plug-In Repetitive Control Strategy for High-Order Wide-Output Range Impedance-Source Converters. IEEE Trans Power Electron. 2017;32(8): 6510–6522.

16. Mohanty PR, Panda AK. A nonlinear control scheme based on dynamic evolution path theory for improved dynamic performance of boost PFC converter working on nonlinear features. ISA Trans [Internet]. 2016; 65: 254–261. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0019057816301380

17. Mohanty PR, Panda AK. Fixed-Frequency Sliding-Mode Control Scheme Based on Current Control Manifold for Improved Dynamic Performance of Boost PFC Converter. 2017;5(1): 576–586.

18. Rao VM, Jain AK, Reddy KK, Behal A. Experimental comparison of digital implementations of single-phase PFC controllers. IEEE Trans Ind Electron. 2008;55(1): 67–78.

19. Feng YT, Tsai GL, Tzou YY. Digital control of a single-stage single-switch flyback PFC ac/dc converter with fast dynamic response. PESC Rec - IEEE Annu Power Electron Spec Conf. 2001;2: 1251–1256.

20. Singh B, Singh S, Chandra A, Al-Haddad K. Comprehensive study of single-phase AC-DC power factor corrected converters with high-frequency isolation. IEEE Trans Ind Informatics. 2011;7(4): 540–556.

21. Texas Instruments Inc. Phase-Shifted Full Bridge DC/DC Power Converter Design Guide. 2014;(May 2014):56. Available from: http://www.ti.com/lit/ug/tidu248/tidu248.pdf

22. Kinnares V, Hothongkham P. Circuit analysis and modeling of a phase-shifted pulsewidth modulation full-bridge-inverter-fed ozone generator with constant applied electrode voltage. IEEE Trans Power Electron. 2010;25(7): 1739–1752.

23. Ye Z, Jain PK, Sen PC. A full-bridge resonant inverter with modified phase-shift modulation for high-frequency AC power distribution systems. IEEE Trans Ind Electron. 2007;54(5): 2831–2845.

24. Mishima T, Sakamoto S, Ide C. ZVS Phase-Shift PWM-Controlled Single-Stage Boost Full-Bridge AC-AC Converter for High-Frequency Induction Heating Applications. IEEE Trans Ind Electron. 2017;64(3): 2054–2061.

25. Axelrod B, Berkovich Y, Ioinovici A. Switching Control Technique of Phase-Shift- Controlled Full-Bridge Converter to Improve Efficiency Under Light-Load and Standby. Proc 2003 Int Symp Circuits Syst 2003 ISCAS ’03. 2003;3(4): 1001–1012.

26. Lai YS, Chen BY. New random PWM technique for a full-bridge DC/DC converter with harmonics intensity reduction and considering efficiency. IEEE Trans Power Electron. 2013;28(11): 5013–5023.

Downloads

Published

2019-03-04

Issue

Section

บทความวิจัย