RFM Analysis to Segment Users of Printers and Copiers in Organizations: A Case Study of School of Informatics, Walailak University

Main Article Content

กาญจนา หฤหรรษพงศ์ ปิยมาศ จิตตระ

Abstract

This research aims to discover knowledge by cluster analysis data of printer and copier usage in the organization using data mining techniques in clustering. There are three types of data to analyze: printing information with the printer, printing with a copier, and photocopying usage. This research applies the Recency, Frequency, and Monetary (RFM) model to segment the users according to the usage behavior regarding the printer and copier. This paper presents a method for analyzing such data using printer and copier data comprising 84,764 transactions of 78 users in the School of Informatics, Walailak University, within the period of use from 2011 to 2016 using RapidMiner Studio version 7.4.


The results of the RFM segmentation can be clearly divided into 14 groups. The interesting findings were that there are 15 users who are frequent users and have a high usage rate. This knowledge can help organizations monitor staff behaviors regarding using printers and copiers that are consistent with their jobs. We found that no abnormal results were found because most users in this group are staff that are responsible for documentation work. In addition, most of the printing behavior was using the printer rather than the copier.

Keywords

Article Details

How to Cite
หฤหรรษพงศ์ก., & จิตตระป. (2018). RFM Analysis to Segment Users of Printers and Copiers in Organizations: A Case Study of School of Informatics, Walailak University. Journal of Information Technology Management and Innovation, 5(1), 21-28. Retrieved from https://www.tci-thaijo.org/index.php/itm-journal/article/view/140207
Section
บทความวิจัย

References

[1] ศูนย์เทคโนโลยีดิจิทัล มหาวิทยาลัยวลัยลักษณ์. (2559). ระบบควบคุมงานพิมพ์และถ่ายเอกสาร. มหาวิทยาลัยวลัยลักษณ์, นครศรีธรรมราช.
[2] เอกสิทธิ์ พัชรวงศ์ศักดา. (2557). An Introduction to Data Mining Techniques. กรุงเทพฯ : สำนักพิมพ์เอเชีย ดิจิตอลการพิมพ์.
[3] Han J. and Kamber M. (2006). Data Mining Concepts and Techniques. 2nd ed. San Francisco: Morgan Kaufmann.
[4] Tan P. N., Steinbach M., and Kumar V. (2005). Introduction to Data Mining. Boston: Pearson.
[5] Stephan K.. (2004). Managing Data Mining. London: CyberTechPublishing.
[6] เอกสิทธิ์ พัชรวงศ์ศักดา. (2558). Introduction to Business Analytics with RapidMiner Studio 6. กรุงเทพฯ: สำนักพิมพ์เอเชีย ดิจิตอลการพิมพ์.
[7] Wei Jo-Ting, Lin Shih-Yen and Wu Hsin-Hung. (2010). A review of the application of RFM model. African Journal of Business Management, 4(19), 4199-4206.
[8] Fader P. S., Hardie B. G., and Lee K. L. (2005). RFM and CLV: Using iso-value curves for customer based analysis. Journal of Marketing Research, 42(4), 415-430.
[9] Soeini R. A. and Fathalizade E. (2012). Customer Segmentation based on Modified RFM Model in the Insurance Industry. In Proceedings of 2012 4th International Conference on Machine Learning and Computing. 101-104. Singapore: IACSIT Press.
[10] Dursan A. and Caber M. (2016). Using data mining techniques for profiling profitable hotel customer: An application of RFM analysis. Journal of Tourism Management, 18, 153-160.
[11] เอกสิทธิ์ พัชรวงศ์ศักดา. (2558). Introduction to Business Analytics with RapidMiner Studio 6. กรุงเทพฯ: สำนักพิมพ์เอเชีย ดิจิตอลการพิมพ์.
[12] เอกสิทธิ์ พัชรวงศ์ศักดา. (2557). Practical Data Mining with RapidMiner Studio 6. กรุงเทพฯ: สำนักพิมพ์เอเชีย
ดิจิตอลการพิมพ์.