การเปลี่ยนแปลงกระบวนการเจริญ
ของ cytokine ในสภาวะกระดูกพรุน
ของหญิงวัยหมดประจำเดือน

หัทยา เพชรพิบูรณ์, โอ. (ภายใต้หัวหน้า)

บทคัดย่อ

หญิงวัยหมดประจำเดือนจะมีระดับของ estrogen ในเลือดลดลง ระดับของ estrogen ที่ลดลง น้อยอาจจะมีผลต่อการเปลี่ยนแปลงของ reproductive tissue ในลวด
ข้อที่มีผลต่อต่อมเยื่อย่อย จน เช่น เนื้อเยื่อกระดูก เนื้อเยื่อไขมัน และเซลล์ของเส้นเลือด เป็น
ที่ทราบกันว่าสารประกอบ estrogen เป็นสาเหตุสำคัญของการเกิดโรคกระดูกพรุนในหญิง
วัยหมดประจำเดือน มีการศึกษาว่า estrogen receptor ถูกพบในเซลล์กระดูก และเซลล์
อื่น ๆ ได้แก่ osteoblast osteocyte osteoclast hematopoietic cells และ vascular cells
บทคัดย่อได้กล่าวถึงการศึกษาต่าง ๆ เกี่ยวกับความสัมพันธ์ของระดับ estrogen ในหญิง
วัยหมดประจำเดือน และระดับของ cytokine ที่เปลี่ยนแปลงไป ซึ่งจะนำไปสู่การลดลง
กระดูก (bone resorption) โดยพบว่าระดับของ estrogen ที่ลดลงจะมีผลต่อการ
เปลี่ยนแปลงกระบวนการสร้างและหลั่ง cytokine ของเซลล์ต่าง ๆ estrogen receptor เหล่านี้ และ
cytokine เหล่านี้จึงมีส่วนในการเพิ่มจำนวน กระดูกการทำงานและยิ่ง ช่วงอายุของ
osteoclast ซึ่งเป็นกล/all in การลดลงกระดูก (bone resorption) ในหญิงวัยหมดประจำเดือน

Abstract

Changes in cytokine activity in postmenopausal osteoporosis

Hattaya Petchpiboonthai, Ms.C*

Menopause is associated with a rapid decline in circulating estrogen. The
decline in sex hormones has many implications for reproductive tissue and non
reproductive tissue such as bone, adipose tissue and blood vessels. Estrogen
deficiency is a primary pathogenic factor in postmenopausal osteoporosis. Estrogen
receptors have been identified in osteoblast, osteocyte, osteoclast, hematopoietic cells
and vascular cells. Estrogen deficiency changes the activity of cytokine producing in
these cells. Cytokines are the most powerful stimulants of bone resorption known.
They directly and through the stimulation of other local factors intervene with every
single step in osteoclastogenesis that determine the rate of bone resorption in
postmenopausal osteoporosis.

(MJS 2003; 10: 33 – 43)

* ภาควิชาการวิทยาศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ
Department of Anatomy, Faculty of Medicine, Srinakarinwirot University
บทนำ

กระดูกซึ่งเป็น dynamic tissue เนื่องจากมีการเปลี่ยนแปลงอยู่ได้ช้า ไม่มีแรงกด (pressure) หรือแรงเครียด (tension) มากระทำต่อกำลังกระดูก จะทำให้เกิดการละลาย (bone resorption) หรือการสร้างกระดูกบริเวณนั้นตามล่าสุด และที่สำคัญคือ กระดูกจะมีการละลายและสร้างตลอดชีวิตที่เรียกว่า bone remodeling เพื่อรักษาสมดุลของระดับแคลเซียมในเลือด โดยการละลายกระดูกจะเกิดในบริเวณ osteon ที่สร้างใหม่อุ่นอยู่ไม่มาก และมีการสะสมเกลือ (mineralization) ที่อินทรีย์น้อยลง

การสร้างกระดูกในระยะ embryo มี 2 วิธี คือ intramembranous และ endochondral bone formation intramembranous bone formation เริ่มต้นภายใน mesenchymal tissue ส่วน endochondral bone formation เริ่มต้นจากการสร้างเป็นกระดูกย่อยซึ่งมีเป็นแบบจำลอง (model) ก่อนแล้วจึงส่งเสริมเป็นกระดูกเก่า แยกที่กระดูกย่อย้อยังไม่สิ้นสุดตามยาวสามารถสร้างกระดูกที่มี 2 วิธี จะได้กระดูกที่มีลักษณะทางจุลทรรศน์ของเยื่อบริเวณกระดูกมีให้แก่กระดูกฟิลล์ มักจะมีการถูกทำให้การสร้างกระดูก 2 วิธี เรียก primary bone หรือ immature bone ซึ่งตอบรับ primary bone จะมีการเจริญของ collagen และ lamella ภายในเนื้อกระดูกโดยได้เป็น secondary bone ซึ่งหมายถึง secondary bone จะขับเคลื่อนเรื่องการเจริญของลักษณะการเจริญของ new bone และ endochondral กระดูกซึ่งมีการเจริญของ new bone และ endochondral กระดูกซึ่ which is the primary bone which is immature bone.

เกิดเป็น peak bone mass ในระยะกระดูกสูงสุด (failure to achieve optimal peak bone mass during skeletal growth)

2. การละลายกระดูกที่เกิดขึ้นเป็นระยะหลังเกิด peak bone mass (excessive resorption of bone once peak bone mass has been achieved)

3. การกระพร้องของการสร้างกระดูกในระยะ remodeling (impaired bone formation response during remodeling)

ผู้ที่อายุน้อย (young person) จะมีอิทธิพลของการสร้างกระดูก (bone development) เร็วกว่าผู้ที่มีอายุ (adulthood) เร็วกว่าผู้ที่มีอายุ (adulthood) ที่กระดูกเจริญเต็มที่แล้วอิทธิพลของการสร้างกระดูกจะสมดุลกับอิทธิพลของการละลายกระดูก เซลล์กระดูกที่เกี่ยวข้องกับการสร้างและการละลายกระดูก ได้แก่ osteoprogenitor cell osteoblast osteocyte และ osteoclast osteoprogenitor cell คือเซลล์ที่มีศักยภาพเปลี่ยนไปเป็น osteoblast ได้ osteoblast เป็นเซลล์ออกมาของกระดูกทำหน้าที่สร้าง organic component ของ bone matrix osteocyte เป็นเซลล์กระดูกที่เจริญเต็มที่เป็นosteocyte เป็นเซลล์กระดูกที่เจริญเต็มที่เป็น osteocyte เป็นเซลล์ที่ไม่ active สร้าง organic component ของ bone matrix เพื่อทำให้รักษาฟื้นฟูกระดูก (bone matrix)
maintenance) และเพื่อตอบสนองต่อ tension ที่มาจากกระดูก (mechanotransduction) ทำนั้น osteoclast เป็น multinucleated cell ซึ่งมีเซลล์ต้นกำเนิดตัวเล็กกว่ากับเซลล์ต้นกำเนิดของ monocyte คือ granulocyte-macrophage progenitor cell ใน bone marrow. osteoclast เป็นเซลล์ที่มีบทบาทสำคัญในเกิดการกระดูก (bone resorption) อยู่อย่างไม่เปลี่ยนแปลง osteoclast precursor cell ไปเป็น mature osteoclast ดังนั้นถามมี cytokine ทางกระดูกให้มีการเพิ่มจำนวนของ osteoclast precursor cell ให้ได้จำนวนมากก็ได้ mature osteoclast จำนวนมากมายเป็นผลออก osteoclast จัดสามารถกระดูก นอกจากนี้ยังมี cytokine ทำให้เกิด apoptosis ของ osteoclast ทำให้ส่ง อาหาร (life span) ซึ่ง osteoclast ยังไม่รู้สึกเป็นผลให้มี osteoclast ซึ่งนำสู่การกระดูก การกระดูก ต่อไปจะทำให้เกิดผลของ estrogen และ estrogen deficiency ทำให้ cytokine ซึ่ง cytokine จะมีผลต่อการสร้าง osteoclast การกระตุ้นการสร้างกระดูกโดย osteoclast และ apoptosis ของ osteoclast ต่อไปนี้

I สาระชนิด estrogen สามารถมีประจำ distinction ซึ่งกระชับทั้งกระดูกและกระชับที่มีผลต่อการสร้างและหลั่ง cytokine

มีการทดสอบที่แสดงให้เห็นว่า สาระชนิด estrogen (estrogen deficiency) และสาระหมดประจำการทำให้เกิดการกระชับอวัยวะที่เป็นธรรมชาติหรือจากการกระชับ (natural and surgical menopause) กระชับให้เซลล์ต้นกำเนิด bone microenvironment สร้าง cytokine มากมาย เช่น estrogen deficiency ทำให้ cytokine 遨游 circulating monocyte และ bone marrow macrophage สร้าง IL-1, IL-6 และ TNF-α มากขึ้น และสาระชีวภาพ หรือ surgical menopause ทำให้ระดับ IL-6 และ TNF-α มากขึ้น ในส่วนจะสูญเสียค่ะ มีการศึกษาพบว่าสาระชนิด estrogen มีผลทำให้เซลล์สร้าง cytokine มากมาย โดย estrogen จะไปเพิ่มจำนวน cytokine receptors และเพิ่ม cofactor ของ cytokine action.

II Estrogen มีอิทธิพลในการอย่างการสร้างและหลั่ง cytokine

มีการศึกษาพบว่า estrogen สามารถสร้างเซลล์สร้างและหลั่ง cytokine ให้สร้างและหลั่ง cytokine ได้เร็วขึ้น เช่น estrogen จะอิทธิพล osteoblast-like
เซลล์ monocyte/macrophage และ whole blood culture ให้สารรังและเซลล์ IL-1β และ TNF-α ได้จากส่งน้ําเหลือง estrogent สามารถรับรับ macrophage bone marrow cell ที่มีในที่สืบสาน blood culture bone marrow stromal cell และ osteoblast ให้สารรังและเหลือง IL-6 ได้แสดง อย่างที่น้ําข้อมูลในผู้ป่วยที่มีรังไขมันมีระดับที่สูงสุดที่สันหลังอยู่ในใน13,14,15,16 และการให้ estrogent แก่หนู mice ที่ถูกตัดตัวใน17,18 จะทำให้ระดับของ IL-6 ไม่ลดลงต่อไป

มีการทดลองที่แสดงให้เห็นว่า กลไก estrogent ยังเป็นอะไรที่ทำให้กระดับ IL-6 ต่ํา estrogent ไม่ใช่เรื่องไม่ให้ NF-κB ขึ้นไป receptor ที่อยู่บน regulatory region ของ IL-6 gene (รูปที่ 1) และผลลัพธ์ที่ estrogent ออกมาชี้ว่ามีการสร้าง TNF-α ต่ํา estrogent จะออกมาชี้ว่ามีการสร้าง activator protein-1 (AP-1) บน TNF-α transcription gene โดยผ่านทาง JNK activity (รูปที่ 1)

III ผลกระทบ estrogent และ estrogent deficiency ต่อการสร้างและลง OPG RANK RANKL M-CSF GM-CSF TNF-α และ TGF-β

จากที่กล่าวมาแล้วข้างต้นจะพบว่า estrogent deficiency มีผลกระทบให้เซลล์ที่เกี่ยวข้องกับการสร้างและระบายกระดูกสร้าง cytokine มากขึ้น ส่วน estrogent จะมีผลต่อการสร้าง cytokine cytokine ที่กล่าวถึงไปแล้วนั้นได้แก่ IL-1 IL-6 TNF-α ยังมี cytokine ตัวอื่นๆ ที่เกี่ยวข้องกับการสร้างและระบายกระดูกที่ยังไม่ได้กล่าวถึงรายละเอียด cytokine เหล่านั้นได้แก่ osteoprotegerin (OPG) receptor activator of nuclear factor—kappa B (RANK) receptor activator of nuclear factor kappa B ligand (RANKL) macrophage—colony stimulating factor (M-CSF) granulocyte macrophage—colony stimulating factor (GM-CSF) tumor necrosis factor—α (TNF-α) Transforming growth factor—β (TGF-β) ซึ่งจะได้
กล่าวถึงรายละเอียดของ cytokine แต่ละตัวดังนี้

1. Osteoprotegerin (OPG)

OPG บางทีเรียกว่า osteoclastogenesis inhibiting factor จัดอยู่ในกลุ่ม TNF receptor OPG มีบทบาทในการยับยั้ง osteoclast formation 40,41 OPG สร้างมาจากเนื้อเยื่อหลายชนิด 2 estrogen จะกระตุ้น human osteoblast 17 และ stromal cell 42,43 ให้มีการสร้าง OPG mRNA และโปรตีนมากขึ้น สาระ estrogen deficiency มีผลในการสร้าง OPG ลดลง และเมื่อให้กระตุ้นด้วย estrogen จะทำให้การสร้าง OPG กลับมามากขึ้น 44 จากการเปรียบเทียบพบว่า หญิงวัยหน้าสั่งเจ้าเดือน ที่ได้รับการกระตุ้นด้วย hormone จะระดับของ OPG ในเลือดสูงกว่าหญิงวัย หมดประจำเดือนที่ไม่ได้รับการกระตุ้นด้วย hormone 45

2. Receptor activator of nuclear factor kappa B (RANK)

RANK บางทีเรียกว่า osteoclast differentiation and activation receptor RANK จัดอยู่ในกลุ่ม TNF receptor พบได้บนเซลล์osteoclast และ dendritic cell

3. Receptor activator of nuclear factor kappa B ligand (RANKL)

RANKL บางทีเรียกว่า osteoclast differentiation factor หรือ OPG–lignan หรือ TNF related activaton – induced cytokine RANKL จัดอยู่ในกลุ่ม TNF lignan family เป็น рецепторที่พบบน membrane ของ stromal cell osteoblast lymphocyte และ endothelial cell RANKL มีบทบาทในการกับ lymphocyte development สาระ estrogen deficiency จะเปลี่ยนแปลง activity ของ RANKL เป็นผลให้มีการพัฒนาและกระตุ้น activity ของ T และ B cell 46 ปฏิกิริยาระหว่าง RANKL และ RANK ซึ่งอยู่บน osteoclast จะกระตุ้น differentiation ของ osteoclast precursor cell ไปเป็น mature osteoclast และเพิ่ม activity ของ osteoclast 27 พบว่าเมื่อ OPG อยู่ที่ RANK จับกับ RANKL จะสามารถบังคับปฏิกิริยาได้ ในหมี mice ที่มี RANKL และ RANK deficiency จะไม่สามารถ osteoclast ไม่ให้ฟังก์ชัน 48,49

แสดงในเหตุนี้ เมื่อ RANKL จับกับ RANK จะส่งเสริมให้ osteoclastogenesis และเมื่อ OPG อยู่ที่ RANK จับกับ RANKL จะสามารถยับยั้ง osteoclastogenesis ได้

GM–CSF และ M–CSF สร้างโดย bone marrow stromal cell มีบทบาทในการขย้ำม้าให้เกิด osteoclast formation โดยควบคุมการสร้าง การเจริญเติบโต และการทำการหน้าที่ของ granulocyte และ monocyte–macrophage 50 พบว่าการสั่ง mononuclear cell ที่มาจากเสื้อของหญิงที่ทำการ surgical menopause จะถูกกระตุ้นให้มีการเพิ่ม activity ของ GM–CSF 10 และขย้ำม้าของ bone marrow ของหญิงที่อยู่ในระยะ 5 ปีแรกของ natural menopause จะสูงกว่า GM–CSF มากกว่าเสื้อของ bone marrow ของหญิงในระยะ premenopause 15 สาระ estrogen deficiency กระตุ้นให้ stromal cell ใน bone marrow สร้าง soluble M–SCF 23,51 สำรอง estrogen จะขย้ำม้า bone marrow ไม่ให้สร้าง membrane bound M–CSF 52

ตามที่ทราบมาแล้ว osteoclast มีกิจกรรมมาจาก granulocyte–macrophage progenitor cell ใน bone marrow และ osteoclast มีบทบาทสำคัญในการระบายกระดูก จากผลกระทบของosteoclast ต่างๆ จัดว่าเป็นเหตุให้เกิด osteoclast เป็นผลทางภูมิคุ้มกันของ obesity, fibrotic, และ metabolic disease ผู้ที่มี estrogen deficiency จะกระตุ้นให้มีการสร้าง GM–CSF และ M–CSF มากกว่า และเขียนนำไปเกิด osteoclast จำนวนมากและมีผลให้เกิดการละลายกระดูกมากกว่า เมื่อเทียบกับผู้มีวัยหมดประจำเดือน ตามที่มีการระบายของ GM–CSF น้อยกว่า

5. Tumor necrosis factor–α (TNF–α)

TNF–α สร้างจาก macrophage มีหน้าที่หลักแล้วกับ IL–1 นอกจากนี้ยังมีการศึกษาพบว่า TNF–α เป็นสิ่งช่วยให้ osteoblast สร้าง collagen 53,54–59

6. Transforming growth factor–β (TGF–β)

TGF–β ตกปลาโมเลกุลจาก bone matrix ระหว่างการกระจำเนื้อกระดูก (osteoclasia) ปัจจุบันพบว่าหน้าที่ของ TGF–β มีทั้งด้านยั้งและกระตุ้นการเกิด osteoclast หน้าที่ของ TGF–β เนื่องกับการยั้ง
osteoclast. ได้แก่ การศึกษาที่พบว่า TGF-β เป็น major inhibitor ของ osteoclast generation. โดย TGF-β จะเข้าไปทำให้เพิ่มจำนวนของ osteoclast precursor (รูปที่ 2) และยังพบว่า TGF-β ขัดขวาง osteoblast ให้สร้าง bone matrix และส่งเสริมการเกิด mineralization ของ matrix นอกจากนี้ TGF-β ยังมีการกระตุ้นการเกิด apoptosis ของ osteoclast (รูป 2). ในทางกลับกันการศึกษาในมนุษย์พบว่า TGF-β มีบทบาทสำคัญในการ differentiation ของ osteoclast precursor cell ไม่เป็น osteoclast ซึ่งการที่ TGF-β มีบทบาท 2 อย่างที่ต้องกล่าวถึงคือ การกระตุ้นการศึกษาเพื่อต่อสัญญาณ

จากการศึกษาพบว่า ovariectomized rat เมื่อได้รับ IL-1 receptor antagonist (IL-1ra) หรือ inhibitory ต่อ IL-1 หรือ TNF-α binding protein (potent inhibition of TNF-α) จะสามารถป้องกันการสูญเสียกระดูกได้ และใน IL-6 knockout mice ที่ถูกทำ ovariectomy สามารถป้องกันไม่ให้มี bone loss ได้. ใน ovariectomized mice ที่มี T cell deficiency ถ้าจะไม่มี bone loss ยังคงมีการเพิ่มขึ้นของจำนวน osteoclast ทั้งใน in vitro และ in vivo ของ ovariectomized mice ถูกยับยั้งได้โดย antibody ต่อ IL-6.

IV Multiple interaction by which cytokine and estrogen regulate bone resorption

จากที่กล่าวมาทั้งหมดตั้งแต่ต้นจะเห็นว่า ระดับของ estrogen จะมีผลควบคุมให้เซลล์บางชนิด เช่น bone cells, cells located with in bone environment, hematopoietic cells และ lymphocyte สร้าง cytokines และ cytokines จะไปมีผลที่ชั้นต่ำสุด ต่างๆ ของ osteoclastogenesis ซึ่งตอนกระตุ้น osteoclast activity และขัดขวาง apoptosis ของ osteoclast ซึ่งปฏิกิริยาข้างล่างจะมีผลต่อการขยายตัวของกระดูก โดย cytokine อาจมีอิทธิพลต่อตัว หรือออกฤทธิ์กับ local factor ทำให้เราสามารถแบ่งกลุ่ม cytokine ตามการออกฤทธิ์ของ cytokine ต่อเนื่อง

กลุ่มของ cytokine แบ่งตามการออกฤทธิ์ของ cytokine (รูป 2)

1. กลุ่ม cytokine ที่ออกฤทธิ์ระยะต้นการเพิ่มจำนวน osteoclast precursor cell (facilitate osteoclast precursor proliferation) ได้แก่ IL-6 RANKL, M-CSF และ GM-CSF

 - IL-1 และ TNF-α จะกระตุ้นให้สร้าง M-CSF, GM-CSF และ IL-6 ซึ่งเป็น cytokine ที่สำคัญในการกระตุ้น early osteoclast precursor ให้แบ่งตัวเพิ่มจำนวน โดย IL-1 สร้างจาก monocyte และ macrophage และ TNF-α สร้างจาก monocyte / macrophage และ T cell ของ bone marrow ของสัตว์ทดลองประจำเดือน

2. กลุ่ม cytokine ที่มีบทบาทในการเปลี่ยน osteoclast precursor cell ไปเป็น mature osteoclast (participate in the differentiation of osteoclast precursor cell into mature osteoclast) ได้แก่ RANKL TNF-α, PGE2 และ TGF-β

 - TNF-α, PGE2 และ TGF-β ออกฤทธิ์โดยตรงในการปฏิบัติการ osteoclast differentiation โดยไม่ผ่าน RANKL

3. กลุ่ม cytokine ที่กระตุ้นปฏิบัติการระยะหลังการกระตุ้น osteoclast (stimulate the bone resorption activity of the mature osteoclast) ได้แก่ RANKL IL-1 และ IL-6

 - IL-1 และ TNF-α กระตุ้นให้สร้าง prostaglandin E₂ (PGE₂) มากขึ้น และ PGE₂ ไปกระตุ้นให้ lymphocyte สร้าง RANKL เมื่อ RANKL จับกับ RANK บน osteoclast จะกระตุ้น resorbing activity ของ osteoclast ขณะเดียวกัน PGE₂ ไปยังอีกที่ให้กระตุ้นสร้าง OPG (เพราะ OPG จะแขวน RANK จับกับ RANKL)

 - IL-1 และ IL-6 กระตุ้น osteoclast activity ด้วยวิธี RANKL-independent mechanism

4. กลุ่ม cytokine ที่ควบคุม osteoclast apoptosis (modulate osteoclast apoptosis) ได้แก่ IL-1 M-CSF RANKL และ TGF-β พบว่าการเพิ่มขึ้นของระดับ IL-1, M-CSF, RANKL และการลดลงของระดับ TGF-β ทำให้กระตุ้น osteoclast apoptosis ทำให้ส่งผลถึง osteoclast กลายเป็นผลให้มี bone resorption เกิดขึ้น

5. กลุ่ม cytokine ที่มีผลต่อการทำงานของ osteoblast (have potent effects on osteoblast function) ได้แก่ IL-1 TGF-β และ TNF-α

 - IL-1 และ TNF-α ยับยั้ง osteoblast ไม่ให้สร้าง collagen และ TGF-β กระตุ้น bone formation ของ osteoblast

จากกลุ่ม cytokine ที่แสดงถึงการควบคุมกันระหว่าง estrogen กับ cytokine ซึ่งไปสู่การกระตุ้นกระดูกจะพบว่ายังมี cytokines ส่วนใหญ่จะถูกควบคุมโดย cytokines ตัวอื่นทำให้เกิดเป็น network ของปฏิบัติการความสามารถของ cytokines ที่มีผลต่อกระบวนการosteoclastogenesis osteoclast resorption activity และการอันยั้ง apoptosis ของ osteoclast ซึ่งจะนำไปสู่การลดกระดูกและเกิดโรคเกิดภาวะกระดูกสุรุก (osteoporosis)

สรุป

บทความนี้ได้อธิบายให้เห็นถึงความสัมพันธ์ของการเปลี่ยนแปลงกระบวนการการทำงานของ cytokine (cytokine activity) ตามการเปลี่ยนแปลงของระดับ estrogen ที่แสดงออกในผู้หญิงวัยประจ้าเติบโต โดยพบว่าภาวะ estrogen deficiency มีผลให้ IL-1 IL-6 และ TNF-α M-CSF GM-CSF RANKL และ RANKL ซึ่งจะกระตุ้นการเพิ่มจำนวนและเพิ่มการทำงานของ osteoclast และส่งผลให้มีการลดลงถึงกระดูกมากขึ้นในภาวะหมดประจำเดือน ส่วน estrogen จะกระตุ้นให้สร้าง PGE₂ ซึ่งจะไปยัง RANK จับกับ RANKL เพื่อยับยั้ง osteoclastogenesis TGF-β ออกฤทธิ์ถ้ากระตุ้นและยับยั้ง osteoclastogenesis ซึ่งมีผลต่อการสลายกระดูกที่ TGF-β เพิ่มเติมป้องกันภาวะกระดูกสุรุกของผู้หญิงวัยประจ้าเติบโตเกิดจากพยาธิการลดกระดูกมากกว่าอัตราการสร้างกระดูก โดยอัตราการลดกระดูกจะเพิ่มขึ้นตามอายุและภาวะหมดประจำเดือน มีการศึกษาที่พบว่าการออกกำลังกายลดช่วงวัยหมด

เอกสารอ้างอิง

and the response to 1,25(OH)2D3 17β-estradiol, and testosterone is age-dependent in primary cultures of mouse-derived osteoblasts in vitro. Endocrine 11: 13-22.

71. Most W, Schot L, Ederveen A, van der Wee-Pala L, Papapoulos S, Lubik C 1995 In vitro and ex vivo evidence that estrogen suppresses increased bone resorption induced by ovariectomy or PTH stimulation through an effect on
77. Riffas L 1999 Bone and cytokines: beyond IL-1, IL-6 and TNF-. Calcif Tissue Int 64: 1-7.
80. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ 1999 Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20: 345-357.