Human Herpesvirus 6

Abstract

Human Herpesvirus 6 (HHV - 6) is a new member of the family Herpesviridae. HHV - 6 has been identified as the etiologic agent of exanthem subitum (roseola infantum) in children (6 - 24 months) with primary infection. Like other herpesviruses, HHV - 6 causes a latent infection after primary infection and can be reactivated by some factors which are still uncertain. It has CD4+ T lymphocytes as target cells which are the same as those of HIV (human immunodeficiency virus). HHV - 6 infection is found in association with immunocompromised patients such as organ transplant patients, AIDS patients and some carcinoma patients, and may cause some complications to these patients. The knowledge about the pathogenesis, transmission, therapy of HHV - 6 and cells which is latently infected by HHV - 6 are still inconclusive and need more investigations in the future.

(MJS 1996; 3: 100 - 106)
บทนำ

ชื่อของ human herpesvirus 6 (HHV - 6) อาจพัฒนาไปได้จากโรคมะคัญหรือโรคมะคัญใน family Herpesviridae และพื้นที่ค้นพบเพิ่มขึ้นประมาณ 10 ปีที่ผ่านมา สมาชิกใน family นี้ซึ่งเป็นที่รู้กันดีได้แก่ herpes simplex virus type 1 และ 2, varicella - zoster virus, cytomegalovirus และ Epstein - Barr virus

HHV - 6 ถูกค้นพบในครั้งแรกในปี พ.ศ. 2529 ซึ่งเป็นการค้นพบโดยบังเอิญจากกลุ่มผู้ป่วย ซึ่งทำการศึกษาเกี่ยวกับไวรัสที่โรคนิวเคลียร์ หรือ HIV หน้าจอ เนื่องจากมีการรู้จักกล้ามเนื้อได้ทำภาพ exactly ไวรัสจาก mononuclear cells ของผู้ป่วยโรคโลหิตและผู้ป่วยที่เป็น lymphoproliferative disorder ผลจากการแยกกล้ามเนื้อ พบว่าจำนวนไวรัสเพิ่มขึ้นใน family Herpesviridae ซึ่งจากการพิจารณาในระยะยาวจะทราบว่าไวรัสก็กล้ามเนื้อเป็นไวรัสใน family Herpesviridae และต้องขึ้นอยู่กับ human herpesvirus 6.

ความสนใจในการศึกษาความสัมพันธ์ของ HHV - 6 กับการรักษาโรคในเตรียมมีมากขึ้นหลังจากพบว่า HHV - 6 เป็นสาเหตุของโรคไอย้อหิวาต์ที่พบในเด็กเล็ก หนังศีรษะโรค exanthem subitum หรือ roseola infantum และเนื่องจาก HHV - 6 สามารถทำให้เกิดการติดเชื้อแบบแบ่ง (latent infection) ได้ เหล่านี้เกิดกับไวรัสอื่น ๆ ใน family นี้ จึงทำให้เจริญเพิ่มจำนวนในไข่ได้ทำให้การกระชับที่เหมาะสม นอกจากนี้ HHV - 6 ยังให้ผลที่เป็นคุณสมบัติเป็น T lymphocyte ชนิดที่มี CD4 อยู่ในเซลล์เลือดแดง เซลล์ปักพักของ HHV กล้ามเนื้อ HHV - 6 ซึ่งอาจทำให้เกิดการทำงานของเนื้อเยื่อมีการติดเชื้อ ผู้ป่วยโรคโลหิตและผู้ป่วยโรคโลหิตที่มีอาการติดเชื้อ HHV - 6 ในผู้ป่วยโรค และจะพบปัญหาที่มีมิสกุญภูมิน☑กับภูมิคุ้มกันโรคที่เคยได้รับวัคซีนภูมิคุ้มกันผู้ป่วยโรค

ผลการศึกษาพบว่า HHV - 6 อาจเป็นสาเหตุของโรคที่สำคัญในคน เนื่องจาก ทำให้เกิดอาการรุนแรง เช่น ปอดอักเสบ (pneumonitis) และสมองอักเสบ (encephalitis) ในผู้ที่ได้รับการปลูกท่ายไข่ของ HHV และทำให้การปลูกท่ายไข่ของ HHV ทำให้ผู้ป่วยโรคและผู้ป่วยโรคที่มีการติดเชื้อ HHV ทำให้เกิดการเกิด Hodgkin's lymphoma, Hodgkin's lymphoma, angioimmunoblastic lymphadenopathy และมะเร็งปากมดลูก (cervical carcinoma) 3

บทความนี้จะกล่าวถึง HHV - 6 ในด้านต่าง ๆ เช่น คุณสมบัติของเชื้อ, ยาที่กำจัด, การคัดลอก, การตรวจวิจัย, ที่กำจัด, การรักษา และโรคที่มีความสัมพันธ์กับการติดเชื้อ HHV - 6.

คุณสมบัติของเชื้อ

HHV - 6 เป็นไวรัสที่มี envelope แสดงว่ามี รูปเรียงแบบ icosahedral มีพื้นเป็น DNA ของตนเอง เส้นสูง เชื้ออาจทำพืชผักของ HHV - 6 เริ่มจาก การเจริญก้าวหน้าระหว่าง HHV - 6 กับ receptor ที่จำเป็น บนเซลล์ที่ติดเชื้อ แล้วจับกลับไปยังเชื้อในคอลูสไก่ทำค่าหน้าที่เป็น receptor ต่อ HHV - 6 HHV - 6 เข้าสู่เซลล์โดย endocytic pathway จากนั้น nucleocapsid แสดงว่ามีโปรตีนคอมเพล็กซ์เพื่อตั้งทางไปยังนิวคลีสต์ มีการสร้าง DNA เพิ่มขึ้น แล้ว DNA จะรวมตัวกับ capsid protein ที่สร้างขึ้นใหม่ได้เป็นส่วน core ของไวรัส หรือนิวคลีอิโคลัส นิวคลีโออิโคลัสแสดงว่าจะออกจากนิวคลีสต์ได้ 2 รูปแบบ คือ เป็นอนุภาคไวรัสที่สมบูรณ์โมเลกุลได้เสนอ envelope ออกจากที่ábbวิเคราะห์ ทำให้กลับไปยังเซลล์โดยอาศัย cytoplasmic vacuole หรือเป็นอนุภาคที่ยังไม่มี envelope แต่มีส่วน tegument ต่างกัน เซลล์ cytoplasmic vacuole และไวรัสได้เสนอ envelope จาก cytoplasmic vacuole ไวรัสออกจากเซลล์โดยการ fuse กับระหว่าง cytoplasmic vacuole กับ cell membrane 3

DNA ของ HHV - 6 มีขนาด 160 - 176 kilobase pair (kbp) ประกอบด้วย unique sequence (U) ขนาดประมาณ 140 kbp อยู่ตรงกลาง มี DR (direct repeat) sequences ขนาดประมาณ 10 kbp อยู่ที่ปลายสองซ้าย 5 ใน DR sequences ประกอบ
ผลของ HHV-6 ต่อเซลล์ที่ติดเชื้อ
เซลล์ที่ติดเชื้อ HHV-6 อาจเกิด cytopathic effect (CPE) เช่น ภายใน 2-4 วัน โดยเซลล์จะมีลักษณะคล้ายเซลล์ใหญ่ สร้างแผล การเปลี่ยนเซลล์ฝี 1-2 หน้าผิว และอาจพบ inclusion body ภายในไอโคโลส และนิวเคลียสด้วย เซลล์ที่เกิด CPE แล้วจะมีเขึมติดต่อไปได้ 8-10 วันก่อนตาย
สามารถตรวจ viral nucleic acid และ antigen ในเซลล์เหล่านี้ได้โดยวิธี in situ hybridization และ indirect immunofluorescence ตามลำดับ

การติดเชื้อแบบแฝง (Latent Infection)
HHV-6 สามารถบันทึกการติดเชื้อแบบแฝงได้หลังจากการติดเชื้อครั้งแรก เหลือไวรัส herpes ชนิดย่อย ๆ อยู่ในหน่วยผนังเซลล์เช่นเซลล์ ผนังที่ไวรัสเข้าไปสะสมอยู่ มีรายงานว่าอาจเป็น monocyte และ epithelial cell ในต่อมนาสlda และ bronchial gland

พบการเกิดโรค
ยังไม่ทราบถึงโรคที่เกิดโรคที่แน่นอน อาจเกี่ยวข้องกับการติดเชื้อ HHV-6 สามารถแสดงการตอบสนองภูมิคุ้มกันต้านเชื้อ โดยเฉพาะ T cell lines บางชนิดและ peripheral blood lymphocyte นอกจากนี้ HHV-6 ยังมีส่วนในการผลิต cytokine บางชนิด เช่น interleukin 6 (IL-6), tumor necrosis factor - alpha (TNF-α) ใน peripheral blood mononuclear cell ด้วย

โรคที่เกี่ยวข้องกับการติดเชื้อ HHV-6

1. การติดเชื้อในเด็กเล็ก การติดเชื้อ HHV-6 ครั้งแรก (primary infection) ในเด็กเล็กที่เกิดโรค exanthem subitum หรือ roseola infantum หรือ sixth disease หรือ fie"
หากไม่ทราบว่าจะเป็นสาเหตุของโรค แต่หนึ่งในในปี พ.ศ. 2531 Yamanishi และคณะ จึงได้สั่งให้ HHV - 6 เป็นสาเหตุของโรค exanthem subitum โดยสามารถแยกซึ่งโรค HHV - 6 จากปฏิกิริยา exanthem subitum28 ที่อาจสร้างขึ้นขึ้นในความผิดปกตินี้จากเกิดจากการอยู่ร่วมกัน23,24

ปฏิกิริยา exanthem subitum จะมีอาการไข้สูง มีมีจำนวนมากถึงการมีมีหลอดเลือด โดยทั่วไปอาการของโรคไม่รุนแรง อาจหายหายเร็วๆ นี้กล่าวถึงการทำให้เกิดการเปลี่ยนแปลงของระบบภูมิคุ้มกันของผู้ป่วย

เนื่องจาก HHV - 6 มีเซลล์เป้าหมายพื้นฐาน HHV จึงมีการศึกษาถึงบทบาทของ HHV - 6 ในการเกิดโรครวมถึงการติดเชื้อ HHV เป็นอย่างมาก โดยสรุปพบว่า

- เมื่อมีการติดเชื้อ HHV - 6 รวมกับ HIV - 1 และทำให้เกิด CPE ต่อ CD4+ T cell ได้รับการติดเชื้อเพียงอยู่ในมิตรภาพนี้
 - HHV - 6สามารถกระตุ้นการแสดงออกของ HIV long terminal repeat ได้
 - HHV - 6กระตุ้นให้การแล้ว infammatory cytokine เช่น TNF-α และ IL-1β ซึ่งมีผลต่อการควบคุมการแสดงออกของ HIV
 - HHV - 6กระตุ้นการแสดงออกของ HIV receptor (CD4) ให้เกิดในในเซลล์ที่ไม่เคยมี CD4 มากกว่านั้น เช่น mature CD8+ T cells, NK cells และ B- T cells ทำให้เซลล์เป้าหมายต่อ HIV มีจำนวนเพิ่มขึ้น

ดังนั้น HHV - 6 จึงทำหน้าที่เป็นปัจจัยร่วมที่มีความสำคัญต่อผู้ป่วยเสียชีวิตอย่างมาก โดยอาจมีอิทธิพลทางอายุจากการช่วยให้ HIV สามารถพิษ จำนวนมากและแพร่กระจายได้ดีใน vmo หรือสายพันธุ์โดยการติดเชื้อของ HHV - 6 ในเซลล์อาณานิยมของระบบภูมิคุ้มกันทำให้การควบคุมเซลล์เสื่อมลง

4. การติดเชื้อในผู้ที่มีภูมิคุ้มกันบกพร่อง HHV - 6 อาจเป็น opportunistic agent และทำให้อาการของโรครุนแรงขึ้นได้ ในผู้ที่มีภูมิคุ้มกันบกพร่อง โดยเฉพาะหลังได้รับการปลูกถ่ายภูมิหรือโรคภูมิ การที่พบในผู้ป่วยที่ผ่านมาก็ไม่ได้มาไม่ได้ เนื่องจากการมีปฏิกิริยาแบบระบบประสาท สมองขัดข้อง และปอดบวมชนิด interstitial โดยพบ variant B มาก
5. **HHV-6** กับมะเร็ง มีการตรวจพบ DNAของ HHV-6 หรือ แอนเดิลอนดี้โตต่อ HHV-6 สูงขึ้นในมะเร็งหลายชนิด เช่น Hodgkin's disease, non-Hodgkin's disease, angioimmunoblastic lymphadenopathy และ cervical carcinoma แต่ยังไม่มีข้อสรุปที่แน่นอนว่ามีความสัมพันธ์กันอย่างไร

ระบบศีรษะ

HHV-6 พบได้บ่อยในระยะแรกที่โรค
ในเด็กแรกเกิดและผู้ติดเชื้อ HHV-6 ที่ได้รับมาจากพ่อแม่จะต้องเรียก หลักคลอด มีรายงานว่าจะมีการเพิ่มขึ้นของระดับแอนเดิลอนดี้ต่อ HHV-6 ถึงในช่วงอายุ 6-24 เดือน จนถึงการดีเอที่ HHV-6 เป็นครั้งแรก โดยมีระดับแอนเดิลอนดี้สูงสุดในช่วงอายุ 6-12 เดือน ทั้งนี้จะพบในผู้ป่วยมีมะเร็งต่อ HHV-6 ถึงร้อยละ 50-100 อย่างไรก็ตาม ระดับของแอนเดิลอนดี้มีแนวโน้มลดลงเมื่อมีอายุเพิ่มขึ้น

การติดต่อ

ยังไม่ทราบแน่ชัดว่า HHV-6 สามารถติดต่อโดยปริภัยได้บ้าง จากการศึกษาของนักชีวิทยาศาสตร์พบว่า HHV-6 น่าจะมีการติดต่อโดยการสัมผัสหรือสัมผัสระหว่างสมาชิกในครอบครัว โดยเฉพาะ ผู้ป่วยติดต่อจากสารพัดสื่อสารจากระบบทางเดินอาหารใน ระบบหรือระบบทางเดินหายใจ เนื่องจากการมีการติดเชื้อ HHV-6 ในช่วง 2 ปีแรก นอกจากนี้ยังต้องพบ HHV-6 ในหน่วย 33,36,37 ในต่อมท้อง 19,28 และbronchial glands 19 ของผู้ใหญ่ที่มีสูญเสีย HHV-6 อาจติดต่อลอยละยืนยันได้ เช่น การสรุป อายุวัย 30, ปัจจัย 40 และที่ติดต่อผ่าน 41 สำหรับ แผนผังเพื่อมีจุดเป็นสาเหตุเฉพาะ เช่น เนื่องจากไม่สามารถตรวจพบ DNA ของ HHV-6 ได้โดยทั่วไป PCR 42

การสะท้อน

ในการศึกษาของอย่าต้านไวรัสสัตว์ HHV-6 พบร่าง phosphaconiacidic acid (PAA) และ phosphonoformic acid (PFA) สามารถยับยั้งการเพิ่มจำนวน ของ HHV-6 ได้ 36,45 โดยยับยั้งการทำงานแอนเดิลอนดี้ DNA polymerase ของ HHV-6 เพื่อสบับ acyclovir และ ganciclovir นั้น พบว่าเฉพาะ ganciclovir เท่านั้นที่มีผลในเยื่อฟกเบ้าผิวหนังของ HHV-6 46,47 HHV-6 ยังมีการตอบสนองต้องยังที่ไม่ทราบค่าอย่างไร ที่คล้ายกับ CMV มาก

การตรวจทางห้องปฏิบัติการ

1. **การตรวจแอนเดิลอนดี้ต่อ HHV-6 ในชีวิตวันวัดวัน** เช่น immunofluorescence, anticomplement immunofluorescence, enzyme immunoassay western blot, radioimmunoprecipitation, circle immunoassay และ competitive immunoassay 48 ปัจจุบันที่มีการตรวจหา IgM และ IgG

2. **การแยกชิงจากผนังส่งตรวจ** เช่น เซลล์จากเลือด, เนื้อเยื่อ, หรือ ของเหลวจากการเจ็บป่วยให้กับอาการซ่อนกระทบจากการค้นหา HHV-6 49 แต่เนื่องจากมีความสัมพันธ์กันต่อมาก มีความเสี่ยงในการทดสอบอาจมีผลการตอบสนองที่ไม่สามารถตอบสนองได้ เช่น ซ่อนทางไวรัส replicative virus หรือ latent virus จึงมีการพัฒนาการตรวจโดยวิธีอื่นๆมากขึ้น

3. **การตรวจหาในจากแต่งส่งตรวจ** เช่น เซลล์จากเลือดหรือเนื้องอก มีการพัฒนาการตรวจชีวิตวันวัดวันได้แก่ in situ hybridization, Southern blot 50, polymerase chain reaction (PCR) 51,52 สำหรับตรวจหา DNA ของ HHV-6 และ Northern blot และ reverse – transcripase PCR สำหรับตรวจหา mRNA ของ HHV-6 6 เป็นต้น

สรุป

HHV-6 เป็นเชื้อไวรัสที่อาจมีความสัมพันธ์ ต่อมะเร็ง เพราะมักจะพบเป็นสาเหตุของโรค exanthem subitum ในเด็กเล็กและเจ้าที่ร่างกายเป็น opportunistic agent ในผู้ที่มีภูมิคุ้มกันที่มาจาก ผู้ที่ได้รับการปลูกฝังวัชรหัส นอกจากนี้ HHV-6 ยังอาจมีส่วนช่วยให้มีการดำเนินโรคของ HHV รวมถึงการค้นหาเกี่ยวกับ HHV-6 จึงควรได้รับ ความสนใจเพื่อเข้าใจให้มากพอในการให้เกิดความเข้าใจ บนบทบาทของ HHV-6 ที่มีต่อโรคระบาดที่สำคัญๆที่มี ความเกี่ยวข้องได้ต่อไปอีก

