Screening and Identification of Endophytic Bacteria from Organic Red Jasmine Rice Soil

Main Article Content

สมคิด ดีจริง อนุตตรีย์ บุญต่อ


Microorganisms have relationship with plants. Endophytic bacteria colonize inner plant tissue without damaging. These bacteria show an important role in plant growth promotion.  Thus, they can contribute to increase efficiency of organic based system of rice Intensification (SRI). The purpose of this study to analyze soil  properties, screen and identify of phosphate solubilizing and indole acetic acid (IAA) endophytic bacteria from organic red jasmine rice tissue. It was found that ten years organic soil have low to moderate content of organic matter, available phosphorus and exchangeable potassium, bulk density, field capacity  and saturated hydraulic conductivity. Endophytic bacteria, RSPVK-2, RRPVK-4, RRTSA-5, RRTSA-6, RLISP2-1, RRTSA-3, RRPVK-1, RRTSA-1 and RSISP2-1 solubilized phosphate in PVK broth at 191.78, 92.65, 91.80, 73.22, 73.17, 71.23, 70.93, 69.93 and 67.49 mgPO42-/L, respectively. Also, bacteria RSTSA-6 could produce indole-3-acetic acid (IAA) 20.55 mg/L.  The genetic sequencing on 16S rRNA of RSPVK-2, RRPVK-4, RRTSA-6, RLISP2-1, RRTSA-1 and RSISP2-1 had similar to Burkholderia cenocepacia, Paenibacillus favisporus, Paenibacillus alvei, Bacillus thuringiensis, Bacillus subtilis and Ralstonia pickettii, respectively. RRTSA-5, RRTSA-3, RRPVK-1 were identified as Bacillus pumilus.


Article Details



เกษมศรี ซับซ้อน. 2541. ปฐพีวิทยา. นานาสิ่งพิมพ์, กรุงเทพฯ. 286 หน้า.
จีราภรณ์ อินทสาร ฉัตรปวีณ์ เดชจิรรัตนสิริ และ ประวิทย์ บุญมี. 2560. ผลของแบคทีเรียที่ผลิตสาร indole-3-acetic acid (IAA) ต่อการเจริญเติบโตและปริมาณธาตุอาหารของพริกขี้หนู. วารสารเกษตร 33(3): 333-344.
บัญชา รัตนีทู. 2555. ปุ๋ยอินทรีย์กับการปรับปรุงดินเสื่อมคุณภาพ. วารสารมหาวิทยาลัยนราธิวาสราชนครินทร์ 4(2): 115-127.
ภัทธนาวรรณ์ ฉันท์รัตนโยธิน. 2557. การคัดแยกเชื้อจุลินทรีย์ที่มีประสิทธิภาพสูงในการสลายฟอสเฟตจากดินรอบรากของข้าวหอมมะลิแดง. รายงานวิจัยฉบับสมบูรณ์. มหาวิทยาลัยแม่โจ้, เชียงใหม่. 55 หน้า.
สุจิตรา ปะนันโต ภาคภูมิ ตันเตชสาธิต ศิริลักษณ์ จิตร-อักษร รังสฤษดิ์ กาวีต๊ะ และ กรรณิการ์ สัจจาพันธ์. 2556. เอนโดไฟติกแบคทีเรียและผลในการส่งเสริมการเจริญเติบโตของข้าว. แก่นเกษตร 41(4): 457-468.
สมคิด ดีจริง และ วิชญาพร ปาวงค์. 2560. การแยก การคัดเลือกและการระบุชนิดของแบคทีเรียเอนโด-ไฟท์ละลายฟอสเฟตจากข้าวแปลงเกษตรอินทรีย์ 5 ปี. หน้า 144-151. ใน: รายงานประชุมวิชาการของมหาวิทยาลัย เกษตรศาสตร์ ครั้งที่ 55. มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
อภิรดี อิ่มเอิบ. 2542. แนวทางปรับปรุงคุณภาพทางเคมีของดินในประเทศไทย. วารสารพัฒนาที่ดิน 36 (376): 24-38.
Ahmad, F., I. Ahmad and M.S. Khan. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research 163(2): 173-181.
Ahmed, S.A., E. Shakh, K.U. Kakar, X. Wang, A.A. Almoneafy, M.R. Ojaghian M.R., B. Li, S.I. Anjum and G. Xie. 2015. Controlling bacterial leaf blight of rice and enhancing the plant growth with endophytic a rhizobacterial Bacillus strains. Toxicological and Environmental Chemistry 97(6): 55-63.
Anand, K., B. Kumari and M.A. Mallick. 2016. Phosphate solubilizing microbes: An effective and alternative approach as biofertilizers. International Journal of Pharmacy and Pharmaceutical Sciences 8(2): 37-40.
Arai, Y. and D.L. Sparks. 2007. Phosphate reaction dynamics in soils and soil minerals: a multiscale approach. Advances in Agronomy 94: 135-179.
Araújo, W.L., J. Marcon, W. Maccheroni, Jr., J.D. Van Elsas, J.W. Van Vuurde and J.L. Azevedo. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology 68(10): 4906-4914.
Blake, G.R. 1965. Particle density. pp. 371-373. In: G.R. Blake (ed.). Methods of Soil Analysis. Part I: Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling. American Society of Agronomy, Inc., Madison, Wisconsin.
Bray, R.H. and L.T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59: 39-45.
de Souza, R., A. Ambrosini and L.M. Passaglia. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology 38(4): 401-419.
Djordjevic, S.P., W.A. Forbes, L.A. Smith and M.A. Hornitzky. 2000. Genetic and biochemical diversity among Isolates of Paenibacillus alvei cultured from Australian honeybee (Apis mellifera) colonies. Applied and Environmental Microbiology 66(3): 1098-1106.
Duangpaeng, A., P. Phetcharat, S. Chanthapho, N. Boonkantong and N. Okuda. 2012. The study and development of endophytic bacteria for enhancing organic rice growth. Procedia Engineering 32: 172-176.
Edwards, J., C. Johnson, C. Santos-Medellín, E. Lurie, N.K. Podishetty, S. Bhatnagar, J.A. Eisen and V. Sundaresan. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America 112(8): E911-20, doi: 10.1073/pnas. 1414592112.
Gardner, W.H. 1986. Water content. pp. 493- 544. In: A. Klute (ed.). Methods of Soil Analysis. Part I: Physical and Mineralogical Methods. American Society of Agronomy, Inc., Madison, Wisconsin.
Gofar, N., H. Widjajanti and N. Marlina. 2015. Stimulate the growth of rice using endophytic bacteria from lowland rice plant tissue. Journal of Soil Science and Agroclimatology 12(2): 45-52.
Hossain, M.T., A. Khan, E.J. Chung, M.H. Rashid and Y.R. Chung. 2016. Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007. Plant Pathology Journal 32(3): 228-241.
Jackson, M.L. 1958. Soil Chemical Analysis. Practice-Hall, Inc., Englewood Cliffs, N.J. 521 p.
Kemmitt, S.J., D. Wright, K.W.T. Goulding and D.L. Jones. 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry 38(5): 898-911.
Khan, A.A., G. Jilani, M.S. Akhtar, S.M.S Naqvi and M. Rasheed. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Journal of Agriculture and Biological Sciences 1(1): 48-58.
Klute, A. and C. Dirksen. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. pp. 687-734. In: A. Klute (ed.). Methods of Soil Analysis. Part I: Physical and Mineralogical Methods. American Society of Agronomy, Inc., Madison, Wisconsin.
Midekssa, M.J., C.R. Löscher, R.A. Schmitz and F. Assefa. 2015. Characterization of phosphate solubilizing rhizobacteria isolated from lentil growing areas of Ethiopia. African Journal of Microbiology Research 9(25): 1637-1648.
Olayemi, O.P. and O.O. Odedara. 2017. Screening of endophytic plant growth-promoting bacteria isolated from two Nigerian rice varieties. Nigerian Journal of Biotechnology 33: 1-10.
Peech, M. 1965. Soil pH by glass electrode pH meter. pp. 687-734. In: A. Klute (ed.). Methods of Soil Analysis. Part II: Chemical and Microbiological Properties. American Society of Agronomy, Inc., Madison, Wisconsin.
Phetcharat, P. and A. Duangpaeng. 2012. Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Procedia Engineering 32: 177-183.
Rodrigues, L., I.M. Banat, J. Teixeira and R. Oliveira. 2006. Biosurfactants: potential applications in medicine. Journal of Antimicrobial Chemotherapy 57(4): 609-618.
Roh, J.Y., J.Y. Choi, M.S. Li, B.R. Jin and Y.H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Journal of Microbiology and Biotechnology 17(4): 547-559.
Shrestha, B.K., H.S. Karki, D.E. Groth, N. Jungkhun and J.H. Ham. 2016. Biological control activities of rice associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS One 11(1): e0146764, doi: 10.1371/journal.pone. 0146764.
Sihi, D., B. Dari, D.K. Sharma, H. Pathak, L. Nain and O.P. Sharma. 2017. Evaluation of soil health in organic vs. conventional farming of basmati rice in North India. Journal of Nutrition and Soil Science 180(3): 389-406.
Surekha, K., K.V. Rao, N. S. Rani, P.C. Latha and R.M. Kumar. 2013. Evaluation of organic and conventional rice production systems for their productivity, profitability, grain quality and soil health. Agrotechnology S11: 1-6.
Surekha, K.K. and Y.S., Satishkumar. 2014. Productivity, nutrient balance, soil quality, and sustainability of rice (Oryza sativa L.) under organic and conventional production systems. Communications In Soil Science and Plant Analysis 45(4): 415-428.
Whelan, A., C. Kechavarzi, F. Coulon, R. Sakrabani and R. Load. 2013. Influence of compost amendments on the hydraulic functioning of brownfield soils. Soil Use and Management 29: 260-270.
Wu, X.C., C.D. Qian, H.H. Fang, Y.P. Wen, J.Y. Zhou, Z.J. Zhan, R. Ding, O. Li and H. Gao. 2011. Paenimacrolidin, a novel macrolide antibiotic from Paenibacillus sp. F6–B70 active against methicillin-resistant Staphylococcus aureus. Microbial Biotechnology 4(4): 491–502.
Xia, Y., S. DeBolt, J. Dreyer, D. Scott and M.A. Williams. 2015. Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Frontiers in Plant Science 6: 490, doi: 10.3389/fpls.2015.00490.
Xuan, L.N.T., T.V. Dung, N.N. Hung and C.N. Diep. 2016. Isolation and characterization of rice endophytic bacteria in acid bacteria in acid sulphate soil of Mekong delta Vietnam. World Journal of Phamacy and Pharmaceutical Sciences 5(8): 301-317.
Xue, R., Y. Shen Y. and P. Marschner. 2017. Soil water content during and after plant growth influence nutrient availability and microbial biomass. Journal of Soil Science and Plant Nutrition 17(3): 702-715.
Zhang, X., L. Chen, Q. Li, X. Qi and S. Yang. 2013. Increase in soil nutrients in intensively managed cash-crop agricultural ecosystems in the Guanting Reservoir catchment, Beijing, China. Geoderma 193-194: 102-108.