Phycocyanin, Allophycocyanin and Phycoerythrin in Spirulina platensis Cultivated in 4 Culture Media

  • อภิชญา ใจด้วง Department of Environmental Science, School of Energy and Environment, University of Phayao, Phayao Province, 56000
  • รัฐภูมิ พรหมณะ Department of Environmental Science, School of Energy and Environment, University of Phayao, Phayao Province, 56000
Keywords: Spirulina platensis, phycocyanin, allophycocyanin, phycoerythrin

Abstract

The study was aimed to determine phycocyanin, allophycocyanin and phycoerythrin, cultivated in 4 different culture media, including Z, N, CH1 and CL1. One gram of dry alga cultivated in medium Z gave significantly had highest phycocyanin of 100.14 mg. whereas the significantly highest allophycocyanin of 40.81 mg was obtained from medium N. Phycoerythrin was rather low with no significant difference in all the media.

References

1. Dillon JC, Phuc AP, Dubacq JP. Nutritional value of the alga Spirulina. World Rev Nutr Diet. 1995;77:32-46.

2. Khan Z, Bhadouria P, Bisen PS. Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol. 2005;6(5):373-379.

3. Wolfgang Beeker E. Microalgae for human and animal. In: Richmond A, Hu Q, editors. Handbook of microalgae culture, biotechnology and applied phycology. Oxford: Blackwell; 2003. p. 312-352.

4. Vaishampayan A, Sinha RP, Hader D, Dey T, Gupta AK, Bhan U, et al. Cyanobacterial biofertilizers in rice agriculture. Bot Rev. 2001;67(4):453-516.

5. Eriksen NT. Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol. 2008;80(1):1-14.

6. Cohen Z. Chemicals from Microalgae. New York: CRC Press, Taylor and Francis Group, 1999.

7. Chaneva G, Furnadzhieva S, Minkova K, Lukavsky J. Effect of light and temperature on the cyanobacterium Arthronema africanum: A prospective phycobiliprotein-producing strain. J Appl Phycol. 2007;19(5):537-544.

8. Miranda MS, Cintra RG, Barros SB, Mancini Filho J. Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res 1998;31(8):1075-1079.

9. Sharma G, Kumar M, Ali MI, Jasuja ND. Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin, and phycoerythrin accumulation. J Microbial Biochem Technol. 2014;6(4):202-206.

10. Simeunovic J, Beslin K, Svireev Z, Kovac D, Babic O (2013) Impact of nitrogen and drought on phycobiliprotein content in terrestrial cyanobacterial strains. J Appl Phycol. 2012;25(2):597-607

11. Zarrouk C. Influence de diverts facteurs physiques et chimiques sular croissance et la photosynthese de Spirulina maxima. Ph.D. Thesis, Universite de Paris, Paris. 1966.

12. Siegelman HW, Kycia JH. Algal biliproteins. In: Hellebust JA, Craigie JS, editors. Handbook of Phycological Methods, Physiological and Biochemical Methods. Cambridge: Cambridge University Press; 1978: p. 71-79.

13. Rodrigues B, Rivas J, Guerrero MG, Losada M. Nitrogen-Fixing Cyanobacterium with a High Phycoerythrin Content. Appl Environ Microbiol. 1989;55(3):758-760.

14. Lima GM, Teixeira PCN, Teixerra CMLL, Filócomo D, Lage CLS. Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Res. 2018;31:157-166.

15. Sarada R, Pillai MG, Ravishhankar GA. Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficiency of extraction methods and stability studies on phycocyanin. Process
Biochem. 1999,34:795-801.
Published
2019-08-30
How to Cite
1.
ใจด้วงอ, พรหมณะร. Phycocyanin, Allophycocyanin and Phycoerythrin in Spirulina platensis Cultivated in 4 Culture Media. Naresuan Phayao Journal [Internet]. 30Aug.2019 [cited 21Nov.2019];12(2):46-9. Available from: https://www.tci-thaijo.org/index.php/journalup/article/view/200681
Section
Research articles