Comparison of surface roughness of drawbead on non symmetry deep drawing of sheet metal by using finite element simulation

Kittitorn Namsanga


This research aims to study the flow of sheet metal in non symmetry shape deep drawing process. The experiment used different surface roughness of drawbeads and then they were simulated by finite element method. The shape of drawbeads is semicircle with 3 levels of surface roughness--0.152 Ra, 0.963 Ra and 6.127 Ra.   The material used was cold rolled steel SPCD (JIS) which was under the condition of using 50 percent of blank holder force from calculation. The results show that the surface roughness of drawbeads effect the flow of sheet metal. Drawbeads with high surface roughness results in increase of tare and wrinkle on workpiece. While those with low surface roughness results in no tare and less wrinkle. Finite element simulation and experiment show a coherent result in the behavior of non symmetry shape deep drawing process. Additionally, finite element simulation can show the area with tare and wrinkle of workpiece. The adaptation of finite element can effectively predict and provide a way to fix the flow of deep drawing process


ดรอว์บีด, การจำลองไฟไนต์เอลิเมนต์. กระบวนการลากขึ้นรูป

Full Text:



กิตติภัฎ รัตนจันทร์, “ผลกระทบจากครอว์บีดในการขึ้นรูปโลหะแผ่น,” วิทยานิพนธ์ปริญญาวิศวกรรมศาสตร์, วิศวกรรมการผลิต, สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ, กรุงเทพฯ, 2542.

Schuler GmbH, Metal Forming Handbook, Berlin: Springer-Verlag, ch. 4, 1998.

T. Meinders, “Developments in numerical simulations of the real-life deep drawing process,” Ph.D. dissertation, Univ. Twente-Enschede, Netherlands, 2000.

T. Meinders, B.D. Carleer, H.J.M. Geijselaers, and J. Huétink, “The implementation of an Equivalent Drawbead model in a finite Element code for sheet model forming,” Journal of material processing Technology, Vol. 83 (1–3), pp. 234-244, 1998.

M. Samuel, “Influence of drawbead geometry on sheet metal forming,” Journal of Materials Processing Technology, Vol. 122 (1), pp.94-103, 2002.

Wen-yu MA, Bao-yu WANG, Lei FU, Jing ZHOU and Ming-dong HUANG., “Effect of friction coefficient in deep drawing of AA6111 sheet at elevated temperatures,” Trans. Nonferrous Met. Soc. China., Vol. 25, pp. 2342-2351, 2015.

S. Zhang, P.D. Hodgson and M.J. Cardew-Hall,. “A finite element simulation of micro-mechanical frictional behaviour in metal forming,” Journal of Materials Processing Technology, Vol. 134, pp. 81-91, 2003.

T.-C. Hsu and T.-S. Yang, “The Computer Simulation of Tribological Influence on Strain Path and Forming Limit in Punch Stretching of Sheet Metal”, Int J Adv Manuf Technol, Vol. 17, pp. 393-399, 2001.

W.R.D. Wilson, X.B. Huang, T.C. Hsu, “A realistic friction model for computer simulation of sheet metal forming processes”, ASME J. Eng. Ind., Vol. 117, 1995, pp. 202–209

D. Wiklunda, B.-G. Rosén, A. Wihlborg, “A friction model evaluated with results from a bending-under-tension test”, Tribology International, Vol. 42 2009 pp.1448-1452.

R. Padmanabhan, M.C. Oliveira, J.L. Alves and L.F. Menezes, “Influence of process parameters on the deep drawing of stainless steel,” Finite Element in Analysis and Design, Vol. 43(14): pp.1062-1067, 2007.

ธีรยุทธ กาญจนแสงทอง, ชวลิต อินปัญโญ, และ ศิริชัย ต่อสกุล, “การศึกษาอิทธิพลของรูปทรงดรอว์บีดในงานลากขึ้นรูปชิ้นงานไม่สมมาตรโดยการจาลองไฟไนต์เอลิเมนต์” การประชุมวิชาการข่ายงานวิศวกรรมอุตสาหการ ประจำปี พ.ศ. 2559, หน้า 1174-1179.