Zinc Nutrition for Infants

Main Article Content

Oraporn Dumrongwongsiri
Nalinee Chongviriyaphan
Umaporn Suthutvoravut

Abstract

In human, rapid growth and development occurs in the first year of life. Adequate nutrition is the important factor to ensure full potential growth and development of infants. Zinc has important roles in infant growth, including releasing many neurotransmitters that regulate appetite, smell, and taste sensations. Zinc involves in cell division and differentiation as wel as growth hormone system. For infant development, zinc is the essential composition of brain; many zinc-dependent neurotransmitters are involved in cognitive and brain memory functions. Concerning immune system, zinc involves in activation of many types of cells in both cell-mediated and humoral immunity, and also cytokine system. There is evidence from many studies showing a decrease in the incidence of infectious diseases in infants and toddlers supplemented with zinc.


Zinc concentration in breast milk is different among many areas in the world due to the difference in genetic factors, ethnics, cultural, and food habit that varies in each country. There are some case reports of exclusively breastfed infants with a clinical manifestation of zinc deficiency. Low-for-lactation-age zinc concentration in breast milk is the cause of zinc deficiency in nursing infants; and that may be due to maternal nutritional status or mutation in geres regulating zinc transporter in mammary gland. It  is estimated that breastfed infants aged more than 6 months should obtain dietary zinc at the amount of more than 90 percent of requirement from complementary foods. Meat is good source of zinc; therefore, meat should be introduced to infants as early complementary foods.

Article Details

How to Cite
1.
Dumrongwongsiri O, Chongviriyaphan N, Suthutvoravut U. Zinc Nutrition for Infants. Rama Med J [Internet]. 2010 Dec. 27 [cited 2024 Apr. 19];33(4):284-9. Available from: https://he02.tci-thaijo.org/index.php/ramajournal/article/view/152485
Section
Review Articles

References

Wieringa FT, Berger J, Dijkhuizen MA, Hidayat A, Ninh NX, Utomo B, et al. Combined iron and zinc supplementation in infants improved iron and zinc status, but interactions reduced efficacy in a multicountry trial in southeast Asia. J Nutr. 2007;137(2):466-71. doi:10.1093/jn/137.2.466.

Thurlow RA, Winichagoon P, Pongcharoen T, Goviachirapant S, Boonpraderm A, Manger MS, et al. Risk of zinc, iodine and other micronutrient deficiencies among school children in North East Thailand. Eur J Clin Nutr. 2006;60(5):623-32. doi:10.1038/sj.ejcn.1602361.

Bhatnagar S, Taneja S. Zinc and cognitive development. Br J Nutr. 2001;85 Suppl 2:S139-45. doi:10.1079/bjn2000306.

Bitanihirwe BK, Cunningham MG. Zinc: the brain's dark horse. Synapse. 2009;63(11):1029-49. doi:10.1002/syn.20683.

Brandão-Neto J, Stefan V, Mendonça BB, Bloise W, Castro AV. The essential role of zinc in growth. Nutr Res. 1995;15(3):335-58. doi:10.1016/0271-5317(95)00003-8.

Salgueiro MJ, Zubillaga MB, Lysionek AE, Caro RA, Weill R, Boccio JR. The role of zinc in the growth and development of children. Nutrition. 2002;18(6):510-9. doi:10.1016/s0899-9007(01)00812-7.

Jackson KA, Valentine RA, Coneyworth LJ, Mathers JC, Ford D. Mechanisms of mammalian zinc-regulated gene expression. Biochem Soc Trans. 2008;36(Pt 6):1262-6. doi:10.1042/BST0361262.

Ninh NX, Thissen JP, Maiter D, Adam E, Mulumba N, Ketelslegers JM. Reduced liver insulin-like growth factor-I gene expression in young zinc-deprived rats is associated with a decrease in liver growth hormone (GH) receptors and serum GH-binding protein. J Endocrinol. 1995;144(3):449-56. doi:10.1677/joe.0.1440449.

Imamoğlu S, Bereket A, Turan S, Taga Y, Haklar G. Effect of zinc supplementation on growth hormone secretion, IGF-I, IGFBP-3, somatomedin generation, alkaline phosphatase, osteocalcin and growth in prepubertal children with idiopathic short stature. J Pediatr Endocrinol Metab. 2005;18(1):69-74. doi:10.1515/jpem.2005.18.1.69.

Brown KH, Peerson JM, Baker SK, Hess SY. Preventive zinc supplementation among infants, preschoolers, and older prepubertal children. Food Nutr Bull. 2009;30(1 Suppl):S12-40. doi:10.1177/15648265090301S103.

Wasantwisut E, Winichagoon P, Chitchumroonchokchai C, Yamborisut U, Boonpraderm A, Pongcharoen T, et al. Iron and zinc supplementation improved iron and zinc status, but not physical growth, of apparently healthy, breast-fed infants in rural communities of northeast Thailand. J Nutr. 2006;136(9):2405-11. doi:10.1093/jn/136.9.2405.

Levenson CW. Regulation of the NMDA receptor: implications for neuropsychological development. Nutr Rev. 2006;64(9):428-32. doi:10.1111/j.1753-4887.2006.tb00228.x.

Black MM. The evidence linking zinc deficiency with children's cognitive and motor functioning. J Nutr. 2003;133(5 Suppl 1):1473S-6S. doi:10.1093/jn/133.5.1473S.

Friel JK, Andrews WL, Matthew JD, et al. Zinc supplementation in very-low-birth-weight infants. J Pediatr Gastroenterol Nutr. 1993;17(1):97-104. doi:10.1097/00005176-199307000-00015.

Ashworth A, Morris SS, Lira PI, Grantham-McGregor SM. Zinc supplementation, mental development and behaviour in low birth weight term infants in northeast Brazil. Eur J Clin Nutr. 1998;52(3):223-27. doi:10.1038/sj.ejcn.1600553.

Bentley ME, Caulfield LE, Ram M, et al. Zinc supplementation affects the activity patterns of rural Guatemalan infants. J Nutr. 1997;127(7):1333-38. doi:10.1093/jn/127.7.1333.

Benton D; ILSI Europe a.i.s.b.l. Micronutrient status, cognition and behavioral problems in childhood. Eur J Nutr. 2008;47 Suppl 3:38-50. doi:10.1007/s00394-008-3004-9.

Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol. 2008;43(5):370-7. doi:10.1016/j.exger.2007.10.013.

Prasad AS, Bao B, Beck FW, Sarkar FH. Zinc enhances the expression of interleukin-2 and interleukin-2 receptors in HUT-78 cells by way of NF-kappaB activation. J Lab Clin Med. 2002;140(4):272-89. doi:10.1067/mlc.2002.127908.

Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH. Antioxidant effect of zinc in humans. Free Radic Biol Med. 2004;37(8):1182-90. doi:10.1016/j.freeradbiomed.2004.07.007.

Brown KH, Peerson JM, Baker SK, Hess SY. Preventive zinc supplementation among infants, preschoolers, and older prepubertal children. Food Nutr Bull. 2009;30(1 Suppl):S12-40. doi:10.1177/15648265090301S103.

Brooks WA, Santosham M, Naheed A, Goswami D, Wahed MA, Diener-West M, et al. Effect of weekly zinc supplements on incidence of pneumonia and diarrhoea in children younger than 2 years in an urban, low-income population in Bangladesh: randomised controlled trial. Lancet. 2005;366(9490):999-1004. doi:10.1016/S0140-6736(05)67109-7.

Haider BA, Bhutta ZA. The effect of therapeutic zinc supplementation among young children with selected infections: a review of the evidence. Food Nutr Bull. 2009;30(1 Suppl):S41-59. doi:10.1177/15648265090301S104.

Dórea JG. Zinc in human milk. Nutr Res. 2000:20(11):1645-88. doi:10.1016/S0271-5317(00)00243-8.

Dórea JG. Zinc deficiency in nursing infants. J Am Coll Nutr. 2002;21(2):84-7. doi:10.1080/07315724.2002.10719198.

Krebs NF. Dietary zinc and iron sources, physical growth and cognitive development of breastfed infants. J Nutr. 2000;130(2S Suppl):358S-360S. doi:10.1093/jn/130.2.358S.

Eneroth H, El Arifeen S, Persson LA, Kabir I, Lönnerdal B, Hossain MB, et al. Duration of exclusive breast-feeding and infant iron and zinc status in rural Bangladesh. J Nutr. 2009;139(8):1562-7. doi:10.3945/jn.109.104919.

Atkinson SA, Whelan D, Whyte RK, Lönnerdal B. Abnormal zinc content in human milk. Risk for development of nutritional zinc deficiency in infants. Am J Dis Child. 1989;143(5):608-11. doi:10.1001/archpedi.1989.02150170110034.

Krebs NF, Reidinger CJ, Hartley S, Robertson AD, Hambidge KM. Zinc supplementation during lactation: effects on maternal status and milk zinc concentrations. Am J Clin Nutr. 1995;61(5):1030-6. doi:10.1093/ajcn/61.4.1030.

Nakamori M, Ninh NX, Isomura H, Yoshiike N, Hien VT, Nhug BT, et al. Nutritional status of lactating mothers and their breast milk concentration of iron, zinc and copper in rural Vietnam. J Nutr Sci Vitaminol (Tokyo). 2009;55(4):338-45. doi:10.3177/jnsv.55.338.

Qian J, Chen T, Lu W, Wu S, Zhu J. Breast milk macro- and micronutrient composition in lactating mothers from suburban and urban Shanghai. J Paediatr Child Health. 2010;46(3):115-20. doi:10.1111/j.1440-1754.2009.01648.x.

Lönnerdal B. Effects of maternal dietary intake on human milk composition. J Nutr. 1986;116(4):499-513. doi:10.1093/jn/116.4.499.

Moser PB, Reynolds RD. Dietary zinc intake and zinc concentrations of plasma, erythrocytes, and breast milk in antepartum and postpartum lactating and nonlactating women: a longitudinal study. Am J Clin Nutr. 1983;38(1):101-8. doi:10.1093/ajcn/38.1.101.

Domellöf M, Lönnerdal B, Dewey KG, Cohen RJ, Hernell O. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status [published correction appears in Am J Clin Nutr. 2004 Dec;80(6):1669]. Am J Clin Nutr. 2004;79(1):111-5. doi:10.1093/ajcn/79.1.111.

Cousins RJ, McMahon RJ. Integrative aspects of zinc transporters. J Nutr. 2000;130(5S Suppl):1384S-7S. doi:10.1093/jn/130.5.1384S.

Chowanadisai W, Lönnerdal B, Kelleher SL. Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem. 2006;281(51):39699‐39707. doi:10.1074/jbc.M605821200.

Wasantwisut E, Kongkachuichai R. Zinc. In: Bureau of Nutrition (BoN), Department of Health, Ministry of Public Health, ed. Dietary Reference Intake For Thais 2003. Bangkok: Express Transport Organization (ETO); 20003:274-82. http://nutrition.anamai.moph.go.th/images/file/%E0%B8%9B%E0%B8%A3%E0%B8%B4%E0%B8%A1%E0%B8%B2%E0%B8%93%E0%B8%AA%E0%B8%B2%E0%B8%A3%E0%B8%AD%E0%B8%B2%E0%B8%AB%E0%B8%B2%E0%B8%A3.pdf.

Gibson RS, Ferguson EL, Lehrfeld J. Complementary foods for infant feeding in developing countries: their nutrient adequacy and improvement. Eur J Clin Nutr. 1998;52(10):764-70. doi:10.1038/sj.ejcn.1600645.

Krebs NF, Westcott JE, Butler N, Robinson C, Bell M, Hambidge KM. Meat as a first complementary food for breastfed infants: feasibility and impact on zinc intake and status. J Pediatr Gastroenterol Nutr. 2006;42(2):207-14. doi:10.1097/01.mpg.0000189346.25172.fd.

PAHO/WHO. Guiding principles for complementary feeding of the breastfed child. Washington DC: Pan American Health Organization/World Health Organization; 2003.

Agostoni C, Decsi T, Fewtrell M, et al. Complementary feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2008;46(1):99-110. doi:10.1097/01.mpg.0000304464.60788.bd.