Equol: a Phytoestrogen from Soy Bean: Its Roles in Health

Main Article Content

Thanannat Meemak Jureerut Daduang Patcharee Boonsiri

Abstract

Equol is a phytoestrogen with similar chemical structure and estrogen-like effect. It is synthesized from soy bean in food by specific metabolic pathway using bacteria in  human intestine. Daidzein, a precursor, is changed to S-(-)equol, which can bind to b-estrogen receptor. However, this metabolic pathway is found in some people because there are several factors involved in this synthesis, for example, type, amount of intestinal bacteria and behavior of soy-bean consumption. There are many reports about using equol in treatment of menopause, some cancer including breast cancer, prostate cancer, cardiovascular disease and osteoporosis. At present, there are many research groups study about equol and its role in health, which may be applied in medicine. 


 

Keywords

Article Details

How to Cite
Meemak, T., Daduang, J., & Boonsiri, P. (2016). Equol: a Phytoestrogen from Soy Bean: Its Roles in Health. Ramathibodi Medical Journal, 39(2), 132-141. Retrieved from https://www.tci-thaijo.org/index.php/ramajournal/article/view/57629
Section
Review Articles

References

1. Marrian GF, Haslewood GA. Equol, a new inactive phenol isolated from the ketohydroxyoestrin fraction of mares' urine. Biochem J. 1932;26(4):1227-1232.

2. Nottle MC. Composition of some urinary calculi of ruminants in Western Australia. Res Vet Sci. 1976;21(3):309-317.

3. Klyne W, Wright AA. Steroids and other lipids of pregnant cow's urine. J Endocrinol. 1959;18(1):32-45.

4. Brown NM, Setchell KD. Animal models impacted by phytoestrogens in commercial chow: implications for pathways influenced by hormones. Lab Invest. 2001;81(5):735-747.

5. Lampe JW, Karr SC, Hutchins AM, Slavin JL. Urinary equol excretion with a soy challenge: influence of habitual diet. Proc Soc Exp Biol Med. 1998;217(3):335-339.

6. Setchell KD, Cole SJ. Method of defining equol-producer status and its frequency among vegetarians. J Nutr. 2006;136(8):2188-2193.

7. Atkinson C, Frankenfeld CL, Lampe JW. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med (Maywood). 2005;230(3):155-70.

8. Rowland IR, Wiseman H, Sanders TA, Adlercreutz H, Bowey EA. Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer. 2000;36(1):27-32.

9. Wiseman H, Casey K, Bowey EA, et al. Influence of 10 wk of soy consumption on plasma concentrations and excretion of isoflavonoids and on gut microflora metabolism in healthy adults. Am J Clin Nutr. 2004;80(3):692-699.

10. Axelson M, Setchell KD. The excretion of lignans in rats -- evidence for an intestinal bacterial source for this new group of compounds. FEBS Lett. 1981;123(2):337-42.

11. Magee PJ, Allsopp P, Samaletdin A, Rowland IR. Daidzein, R-(+)equol and S-(-)equol inhibit the invasion of MDA-MB-231 breast cancer cells potentially via the down-regulation of matrix metalloproteinase-2. Eur J Nutr. 2014;53(1):345-350. doi:10.1007/s00394-013-0520-z.

12. Liu H, Du J, Hu C, Delayed activation of extracellular-signal-regulated kinase 1/2 is involved in genistein- and equol-induced cell proliferation and estrogen-receptor-alpha-mediated transcription in MCF-7 breast cancer cells. J Nutr Biochem. 2010;21(5):390-396. doi: 10.1016/j.jnutbio.2009.01.016.

13. Duncan AM, Merz-Demlow BE, Xu X, Phipps WR, Kurzer MS. Premenopausal equol excretors show plasma hormone profiles associated with lowered risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2000;9(6):581-586.

14. Sugiyama Y, Masumori N, Fukuta F, et al. Influence of isoflavone intake and equol-producing intestinal flora on prostate cancer risk. Asian Pac J Cancer Prev. 2013;14(1):1-4.

15. Tousen Y, Ezaki J, Fujii Y, Ueno T, Nishimuta M, Ishimi Y. Natural S-equol decreases bone resorption in postmenopausal, non-equol-producing Japanese women: a pilot randomized, placebo-controlled trial. Menopause. 2011;18(5):563-74. doi:10.1097/gme.0b013e3181f85aa7.

16. Wood CE, Appt SE, Clarkson TB, et al. Effects of high-dose soy isoflavones and equol on reproductive tissues in female cynomolgus monkeys. Biol Reprod. 2006;75(3):477-486.

17. McCarty MF. Isoflavones made simple - genistein's agonist activity for the beta-type estrogen receptor mediates their health benefits. Med Hypotheses. 2006;66(6):1093-1114.

18. Kuhnle GG, Dell'aquila C, Aspinall SM, Runswick SA, Mulligan AA, Bingham SA. Phytoestrogen content of cereals and cereal-based foods consumed in the UK. Nutr Cancer. 2009;61(3):302-309. doi: 10.1080/01635580802567141.

19. Ni X, Hao QH, Cheng ZY, Fan JR, Liang XL, Wang XL. Effects of different antibiotics on daidzein biotransformation by intestinal microflora of ICR mice in vitro. World Chinese J Dig. 2010;18:716-721.

20. Setchell KDR, Clerici C, Lephart ED, et al. S-equol, a potent ligand for estrogen receptor β, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr. 2005;81(5):1072-1079.

21. Maruo T, Sakamoto M, Ito C, Toda T, Benno Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol. 2008;58(Pt 5):1221-1227. doi:10.1099/ijs.0.65404-0.

22. Minamida K, Tanaka M, Abe A, et al. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine. J Biosci Bioeng. 2006;102(3):247-250.

23. Minamida K, Ota K, Nishimukai M, et al. Asaccharobacter celatus gen. nov., sp. nov., isolated from rat caecum. Int J Syst Evol Microbiol. 2008;58(Pt 5):1238-1240. doi:10.1099/ijs.0.64894-0.

24. Raimondi S, Roncaglia L, De Lucia M, et al. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains. Appl Microbiol Biotechnol. 2009;81(5):943-50. doi:10.1007/s00253-008-1719-4.

25. Matthies A, Clavel T, Gütschow M, et al. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Environ Microbiol. 2008;74(15):4847-4852. doi:10.1128/AEM.00555-08.

26. Kim M, Kim SI, Han J, Wang XL, Song DG, Kim SU. Stereospecific biotransformation of dihydrodaidzein into (3S)-equol by the human intestinal bacterium Eggerthella strain Julong 732. Appl Environ Microbiol. 2009;75(10):3062-3068. doi:10.1128/AEM.02058-08.

27. Decroos K, Vanhemmens S, Cattoir S, Boon N, Verstraete W. Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol. 2005;183(1):45-55.

28. Tamura M, Tsushida T, Shinohara K. Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces. Anaerobe. 2007;13(1):32-35.

29. Yu ZT, Yao W, Zhu WY. Isolation and identification of equol-producing bacterial strains from cultures of pig faeces. FEMS Microbiol Lett. 2008;282(1):73-80. doi:10.1111/j.1574-6968.2008.01108.x.

30. Wang XL, Kim HJ, Kang SI, Kim SI, Hur HG. Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria. Arch Microbiol. 2007;187(2):155-160.

31. Matthies A, Blaut M, Braune A. Isolation of a human intestinal bacterium capable of daidzein and genistein conversion. Appl Environ Microbiol. 2009;75(6):1740-1704. doi:10.1128/AEM.01795-08.

32. Jin JS, Kitahara M, Sakamoto M, Hattori M, Benno Y. Slackia equolifaciens sp. nov., a human intestinal bacterium capable of producing equol. Int J Syst Evol Microbiol. 2010;60(Pt 8):1721-1724. doi:10.1099/ijs.0.016774-0.

33. Zubik L, Meydani M. Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women.

34. Wang CC, Prasain JK, Barnes S. Review of the methods used in the determination of phytoestrogens. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;777(1-2):3-28.

35. Brouwers E, L'homme R, Al-Maharik N, et al. Time-resolved fluoroimmunoassay for equol in plasma and urine. J Steroid Biochem Mol Biol. 2003;84(5):577-588.

36. Valentín-Blasini L, Blount BC, Caudill SP, Needham LL. Urinary and serum concentrations of seven phytoestrogens in a human reference population subset. J Expo Anal Environ Epidemiol. 2003;13(4):276-782.

37. Kunisue T, Tanabe S, Isobe T, Aldous KM, Kannan K. Profiles of phytoestrogens in human urine from several Asian countries. J Agric Food Chem. 2010;58(17):9838-9846. doi:10.1021/jf102253j.

38. Jenks BH, Iwashita S, Nakagawa Y, et al. A pilot study on the effects of S-equol compared to soy isoflavones on menopausal hot flash frequency. J Womens Health (Larchmt). 2012;21(6):674-682. doi:10.1089/jwh.2011.3153.

39. Aso T, Uchiyama S, Matsumura Y, et al. A natural S-equol supplement alleviates hot flushes and other menopausal symptoms in equol nonproducing postmenopausal Japanese women. J Womens Health (Larchmt). 2012;21(1):92-100. doi: 10.1089/jwh.2011.2753.

40. Oyama A, Ueno T, Uchiyama S, et al. The effects of natural S-equol supplementation on skin aging in postmenopausal women: a pilot randomized placebo-controlled trial. Menopause. 2012;19(2):202-10. doi:10.1097/gme.0b013e318227427b.

41. Shi J, Ji A, Cao Z, et al. Equol induced apoptosis of human breast cancer MDA-MB-231 cell by inhibiting the expression of nuclear factor-kappaB. Wei Sheng Yan Jiu. 2011;40(1):95-98.

42. Szliszka E, Krol W. Soy isoflavones augment the effect of TRAIL-mediated apoptotic death in prostate cancer cells. Oncol Rep. 2011;26(3):533-541. doi:10.3892/or.2011.1332.

43. Bellou S, Karali E, Bagli E, et al. The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth. Mol Cancer. 2012;11:35. doi:10.1186/1476-4598-11-35.

44. Lydeking-Olsen E, Beck-Jensen JE, Setchell KD, Holm-Jensen T. Soymilk or progesterone for prevention of bone loss--a 2 year randomized, placebo-controlled trial. Eur J Nutr. 2004;43(4):246-257.

45. Wu J, Oka J, Ezaki J, et al. Possible role of equol status in the effects of isoflavone on bone and fat mass in postmenopausal Japanese women: a double-blind, randomized, controlled trial. Menopause. 2007;14(5):866-874.

46. Wu J, Oka J, Tabata I, et al. Effects of isoflavone and exercise on BMD and fat mass in postmenopausal Japanese women: a 1-year randomized placebo-controlled trial. J Bone Miner Res. 2006;21(5):780-789.

47. Kenny AM, Mangano KM, Abourizk RH, et al. Soy proteins and isoflavones affect bone mineral density in older women: a randomized controlled trial. Am J Clin Nutr. 2009;90(1):234-242. doi:10.3945/ajcn.2009.27600.

48. Liu ZM, Ho SC, Chen YM, et al. Whole soy, but not purified daidzein, had a favorable effect on improvement of cardiovascular risks: a 6-month randomized, double-blind, and placebo-controlled trial in equol-producing postmenopausal women. Mol Nutr Food Res. 2014;58(4):709-717. doi:10.1002/mnfr.201300499.

49. Wong JM, Kendall CW, Marchie A, et al. Equol status and blood lipid profile in hyperlipidemia after consumption of diets containing soy foods. Am J Clin Nutr. 2012;95(3):564-571. doi:10.3945/ajcn.111.017418.

50. Loutchanwoot P, Srivilai P, Jarry H. Effects of the natural endocrine disruptor equol on the pituitary function in adult male rats. Toxicology. 2013;304:69-75. doi:10.1016/j.tox.2012.11.017.