การสังเคราะห์สารสีแคโรทีนอยด์ในจุลินทรีย์ Microbial Carotenoid Biosynthesis

Main Article Content

ประดินันท์ เอี่ยมสะอาด

Abstract

บทคัดย่อ
สารสีกลุ่มแคโรทีนอยด (Carotenoid) จัดเป็นสารที่มีมูลค่าและมีความสำคัญต่ออุตสาหกรรมหลายประเภท ปัจจุบันการผลิตแคโรทีนอยด์สามารถทำได้โดยการสังเคราะห์ทางเคมีและการสกัดจากพืชธรรมชาติ ซึ่งพบปัญหาในเรื่องของคุณภาพผลิตภัณฑ์ที่ขึ้นอยู่กับฤดูกาลและสภาพภูมิอากาศ และยังพบปัญหาในส่วนของต้นทุนการผลิตที่ไม่สอดคล้องกับปริมาณผลิตภัณฑ์ ดังนั้นการศึกษาวิจัยเพื่อใช้จุลินทรีย์ในการผลิต จึงมีความสำคัญเป็นอย่างมาก โดยเฉพาะอย่างยิ่งการควบคุมคุณภาพให้คงที่ รวมไปถึงการลดต้นทุนการผลิต โดยการเลือกใช้วัสดุราคาถูกหรือวัสดุเหลือทิ้งจากอุตสาหกรรมเป็นสารตั้งต้นในการผลิตผลิตภัณฑ์แคโรทีนอยด์ ในบทความนี้ได้กล่าวถึงการสังเคราะห์แคโรทีนอยด์ในจุลินทรีย์ทั้งเชื้อรา แบคทีเรีย และสาหร่ายที่ใช้ในระดับอุตสาหกรรม และยังได้รายงานเกี่ยวกับวิถีการสังเคราะห์แคโรทีนอยด์ในจุลินทรีย์รวมทั้งยีนและเอนไซม์ที่เกี่ยวข้อง ทั้งนี้เพื่อนำไปสู่การประยุกต์ใช้ความรู้ทางเทคโนโลยีชีวภาพร่วมกับการศึกษาพัฒนากระบวนการเพาะเลี้ยงจุลินทรีย์ในการเพิ่มปริมาณแคโรทีนอยด์และนำไปสู่การผลิตในระดับอุตสาหกรรมต่อไปในอนาคต


Abstract
Carotenoid pigments serve as essential and more valuable molecules in several industries. Nowadays, commercial carotenoid is completely synthesized by chemical process and natural plant extraction. This results in variation of product quality based on season and climate change as well as low yield with high production costs. Hence, the study of the microbial carotenoid production is very crucial, especially for constant control of product quality and cost reduction by using low-cost substrates from industrial waste. This article focused on the industrial carotenoid synthesis through the potential microorganism including fungi, bacteria and algae. In addition, the review also highlights the regulation mechanism of carotenoid biosynthesis pathway in term of genes and related enzymes as well as modern biotechnology application to increase the efficiency of carotenoid production level for industrial production in the future.

Article Details

How to Cite
[1]
เอี่ยมสะอาด ป., “การสังเคราะห์สารสีแคโรทีนอยด์ในจุลินทรีย์ Microbial Carotenoid Biosynthesis”, RMUTI Journal, vol. 10, no. 3, pp. 118–131, Dec. 2017.
Section
บทความวิชาการ (Academic article)

References

[1] Parmar M. and Phutela U.G. (2015). Biocolors: The New Generation Additives. International Journal of Current Microbiology and Applied Science (IJCMAS). Vol. 4. Number. 7. pp. 688-694

[2] Valduga E., Val rio A., TreicheL H., Di Luccio M. and Furigo J.A. (2008). Study of the Bio-Production of Carotenoids by Sporidiobolus salmonicolor (CBS 2636) Using Pre-treated Agro-Industrial Substrates. Journal of Chemical Technology and Biotechnology. Vol. 83. No. 9. pp. 1267-1274

[3] Guerin M., Huntley M.E. and Olaizola M. (2003). Haematococcus astaxanthin: Applications for Human Health and Nutrition. Trends Biotechnology. Vol. 21. No. 5. pp. 210-216. DOI: 10.1016/S0167-7799(03)00078-7

[4] Mortensen A. (2006). Carotenoids and Other Pigments as Natural Colorants. Pure and Applied Chemistry. Vol. 78. No. 8. pp. 1477-1491. DOI: 10.1351/pac200678081477

[5] Anunciato T.P. and da Rocha Filho P.A. (2012). Carotenoids and Polyphenols in Nutricosmetics, Nutraceuticals, and Cosmeceuticals. Journal of Cosmetic Dermatology. Vol. 11. No. 1. pp. 51-54. DOI: 10.1111/j.1473-2165.2011.00600.x

[6] Tominaga K., Hongo N., Karato M. and Yamashita E. (2012). Cosmetic Benefits of Astaxanthin on Humans Subjects. The Journal of the Polish Biochemical Society and of the Committee of Biochemistry and Biophysics Polish Academy of Sciences. Vol. 59. No. 1. pp. 43-47

[7] Palozza P., Serini S., Di Nicuolo F., Piccioni E. and Calviello G. (2003). Prooxidant Effects of -carotene in Cultured Cells. Molecular Aspects of Medicine. Vol. 24. No. 6. pp. 353-362

[8] Tapiero H., Townsend D.M. and Tew K.D. (2004). The Role of Carotenoids in the Prevention of Human Pathologies. Biomedical and Pharmacology Journal. Vol. 58. No. 2. pp. 100-110

[9] Krinsky N.I. and Johnson E.J. (2005). Carotenoid Actions and their Relation to Health and Disease. Molecular Aspects of Medicine. Vol. 26. No. 6. pp. 459-516. DOI: 10.1016/j.mam.2005.10.001

[10] Voutilainen S., Nurmi T., Mursu J. and Rissanen T.H. (2006). Carotenoids and Cardiovascular Health. The American Journal of Clinical Nutrition. Vol. 83. No. 6. pp. 1265-1271

[11] Rodrigues S.M., Soares V.L.F., Oliveira T.M., Gesteira A.S., Otoni W.C. and Costa M.G.C. (2007). Isolation and Purification of RNA from Tissues Rich in Polyphenols, Polysaccharides, and Pigments of Annatto (Bixa orellana L.). Molecular Biotechnology. Vol. 37. No. 3. pp. 220-224. DOI: 10.1007/s12033-007-0070-9

[12] Park J., Kim S. and Moon B. (2011). Changes in Carotenoids, Ascorbic Acids, and Quality Characteristics by the Pickling of Paprika (Capsicum annuum L.) Cultivated in Korea. Journal of Food Science. Vol. 76. No. 7. pp. 1075-1080

[13] Bolhassani A., Khavari A. and Bathaie S.Z. (2014). Saffron and Natural Carotenoids: Biochemical Activities and Anti-Rumor Effects. Biochimica et Biophysica Acta. Vol. 1845. No. 1. pp. 20-30. DOI: 10.1016/j.bbcan.2013.11.001

[14] Zeni J., Colet R., Cence K., Tiggemann L., Toniazzo G., Cansian R.L., Di Luccio M., Oliveira D. and Valduga E. (2011). Screening of Microorganisms for Production of Carotenoids. CyTA - Journal of Food. Vol. 9. No. 2. pp. 160-166. DOI: 10.1080/19476337.2010.499570

[15] Mata-G mez L.C., Monta ez J.C., M ndez-Zavala A. and Aguilar C.N. (2014). Biotechnological Production of Carotenoids by Yeasts: an Overview. Microbial Cell Factories. Vol. 13. No. 2. pp. 1-11. DOI: 10.1186/1475-2859-13-12

[16] Goodwin T.W. (1980). The Biochemistry of the Carotenoids. Vol. 1. New York: Chapman and Hall.

[17] Britton G. (1995). Structure and Properties of Carotenoids in Relation to Function. The Federation of American Societies for Experimental Biology Journal. Vol. 9. No. 15. pp. 1951-1958

[18] Bhosale P. and Bernstein P.S. (2005). Microbial Xanthophylls. Applied Microbiology and Biotechnology. Vol. 68. No. 4. pp. 445-455. DOI: 10.1007/s00253-005-0032-8

[19] Kirti K., Amita S., Priti S., Kumar A.M. and Jyoti S. (2014). Colorful World of Microbes: Carotenoids and their Applications. Advances in Biology. Vol. 2014. Article ID 837891. pp. 1-13. DOI: 10.1155/2014/837891

[20] Britton G. (1993). Structure and Nomenclature of Carotenoids. Carotenoids in Photosynthesis. Netherlands : Chapman and Hall.

[21] Schmidt-Dannert C. (2000). Engineering Novel Carotenoids in Microorganisms. Current Opinion in Biotechnology. Vol. 11. No. 3. pp. 255-261

[22] Paniagua-Michel J., Olmos-Soto J. and Ruiz M.A. (2012). Pathways of Carotenoid Biosynthesis in Bacteria and Microalgae. Methods in Molecular Biology. Vol. 892. pp. 1-13. DOI: 10.1007/978-1-61779-879-5_1

[23] Yan Y., Zhu Y.H., Jiang J.G. and Song D.L. (2005). Cloning and Sequence Analysis of the Phytoene Synthase Gene from a Unicellular Chlorophyte, Dunaliella salina. Journal of Agricultural and Food Chemistry. Vol. 53. No. 5. pp. 1466-1469

[24] Li S. and Li L. (2008). Carotenoid Metabolism: Biosynthesis, Regulation, and Beyond. Journal of Integrative Plant Biology. Vol. 50. No. 7. pp. 778-785

[25] Ye Z.W., Jiang J.G. and Wu G.H. (2008). Biosynthesis and Regulation of Carotenoids in Dunaliella: Progresses and Prospects. Biotechnology Advances. Vol. 26. No. 4. pp. 352-360

[26] Tran D., Haven J.H. and Qiu W.G. (2009). An Update on Carotenoid Biosynthesis in Algae: Phylogenetic Synthase Evidence for the Existence of Two Classes of Phytoene Synthase. Planta. Vol. 229. No. 3. pp. 723-729

[27] Poojary M.M. and Passamonti P. (2015). Optimization of Extraction of High Purity All-Trans-Lycopene from Tomato Pulp Waste. Food Chemistry. Vol. 188. No. 1. pp. 84-91. DOI: 10.1016/j.foodchem.2015.04.133

[28] Mezzomo N. and Ferreira S.R.S. (2016). Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review. Journal of Chemistry. Vol. 2016. pp. 1-16. Article ID 3164312. DOI: 10.1155/2016/3164312

[29] Fratianni A., Mignogna R., Niro S. and Panfili G. (2015). Determination of Lutein from Fruit and Vegetables through an Alkaline Hydrolysis Extraction Method and HPLC analysis. Journal of Food Science. Vol. 80. No. 12. pp. C2686-C2691. DOI: 10.1111/1750-3841.13122

[30] Ernst H. (2002). Recent Advances in Industrial Carotenoid Synthesis. Pure and Applied Chemistry. Vol. 74. No. 11. pp. 2213-2226. DOI: 10.1351/pac200274112213

[31] Buzzini P. (2001). Batch and Fed-Batch Carotenoid Production by Rhodotorula glutinis-Debaryomyces castellii Co-Cultures in Corn Syrup. Journal of Applied Microbiology. Vol. 90. No. 5. pp. 843-847

[32] Frengova G.I. and Beshkova D.M. (2009). Carotenoids from Rhodotorula and Phaffia: Yeasts of Biotechnological Importance. Journal of Industrial Microbiology & Biotechnology. Vol. 36. pp. 163-180. Doi: 10.1007/s10295-008-0492-9

[33] Malisorn C. and Suntornsuk W. (2008). Optimization of -carotene Production by Rhodotorula glutinis DM28 in Fermented Radish Brine. Bioresource Technology. Vol. 99. No. 7. pp. 2281-2287

[34] Schneider T., Graeff-H nninger S., French W.T., Hernandez R., Merkt N., Claupein W., Hetrick M. and Pham P. (2013). Lipid and Carotenoid Production by Oleaginous Red Yeast Rhodotorula glutinis Cultivated on Brewery Effluents. Energy. Vol. 61. No. 1. pp. 34-43

[35] Bhosale P. (2004). Environmental and Cultural Stimulants in the Production of Carotenoids from Microorganisms. Applied Microbiology and Biotechnology. Vol. 63. No. 4. pp. 351-361

[36] Takaichi S. (2011). Carotenoids in Algae: Distributions, Biosyntheses and Functions. Marine Drugs. Vol. 9. No. 6. pp. 1101-1118

[37] Jahns P. and Holzwarth A.R. (2012). The Role of the Xanthophyll Cycle and of Lutein in Photoprotection of Photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics. Vol. 1817. No. 1. pp. 182-193. DOI: 10.1016/j.bbabio.2011.04.012

[38] Mehta B.J., Obraztsova I.N. and Cerda-Olmedo E. (2003). Mutants and Intersexual Heterokaryons of Blakeslea trispora for Production of Beta-Carotene and Lycopene. Applied and Environmental Microbiology. Vol. 69. No. 7. pp. 4043-4048

[39] Olaizola M. (2000). Commercial Production of Astaxanthin from Haematococcus pluvialis Using 25,000-Liter Outdoor Photobioreactors. Journal of Applied Phycology. Vol. 12. Issue. 3-5. pp. 499-506. DOI: 10.1023/A:1008159127672

[40] Raja R., Hemaiswarya S. and Rengasamy R. (2007). Exploitation of Dunaliella for Beta-Carotene Production. Applied and Environmental Microbiology. Vol. 74. No. 3. pp. 517-523. DOI: 10.1007/s00253-006-0777-8

[41] Schmidt I. Schewe H., Gassel S., Jin C., Buckingham J. H mbelin M., Sandmann G. and Schrader J. (2011). Biotechnological Production of Astaxanthin with Phaffia rhodozyma/ Xanthophyllomyces dendrorhous. Applied Microbiology and Biotechnology. Vol. 89. Vol. 3. pp. 555-571. DOI: 10.1007/s00253-010-2976-6

[42] Das A., Yoon S.H., Lee S.H, Kim J.Y., Oh D.K. and Kim S.W. (2007). An Update on Microbial Carotenoid Production: Application of Recent Metabolic Engineering Tools. Applied Microbiology and Biotechnology. Vol. 77. No. 3. pp. 505-512. DOI: 10.1007/s00253-007-1206-3

[43] Ye V.M. and Bhatia S.K. (2012). Pathway Engineering Strategies for Production of Beneficial Carotenoids in Microbial Hosts. Biotechnology Letters. Vol. 34. No. 8. pp. 1405-1414

[44] Beuttle H., Hoffmann J., Jeske M., Hauer B., Schmid R.D., Altenbuchner J. and Urlacher V.B. (2011). Biosynthesis of Zeaxanthin in Recombinant Pseudomonas putida. Applied Microbiology and Biotechnology. Vol. 89. No. 4. pp. 1137-1147

[45] Seo Y.B., Choi S.S., Lee J.K., Kim N.H., and Choi M.J., Kim J.M., Jeong T.H., Nam S.W., Lim H.K. and Kim G.D. (2015). Molecular Cloning and Co-Expression of Phytoene Synthase Gene from Kocuria gwangalliensis in Escherichia coli. Journal of Microbiology and Biotechnology. Vol. 25. No. 11. pp. 1801-1809. DOI: 10.4014/jmb.1505.05035

[46] Nasri Nasrabadi M.R. and Razavi S.H. (2010). High Levels Lycopene Accumulation by Dietzia natronolimnaea HS-1 Using Lycopene Cyclase Inhibitors in a Fed-Batch Process. Food Science and Biotechnology. Vol. 19. No. 4. pp. 899-906

[47] Kot A.M., Bta ejak S., Kurcz A., Gientka I. and Kieliszek M. (2016). Rhodotorula glutinis-Potential Source of Lipids, Carotenoids, and Enzymes for use in Industries. Applied Microbiology and Biotechnology. Vol. 100. No. 14. pp. 6103-6117. DOI: 10.1007/s00253-016-7611-8

[48] Wang H.B., Xu R.G., Yu L.J., Luo J., Zhang L.W., Huang X.Y., Zou W.A., Zhao Q. and Lu M.B. (2014). Improved Beta-Carotene and Lycopene Production by Blakeslea trispora with Ultrasonic Treatment in Submerged Fermentation. Zeitschrift f r Naturforschung C: A Journal of Biosciences. Vol. 69. No. 5-6. pp. 237-244

[49] Prieto A., Canavate J.P. and Garcia-Gonzalezb M. (2011). Assessment of Carotenoid Production by Dunaliella salina in Different Culture Systems and Operation Regimes. Journal of Biotechnology. Vol. 151. No. 2. pp. 180-185. DOI: 10.1016/j.jbiotec.2010.11.011

[50] Papaioannou, E.H. and Liakopoulou-Kyriakides, M. (2010). Substrate Contribution on Carotenoids Production in Blakeslea trispora Cultivations. Food and Bioproducts Processing. Vol. 88. No. 2-3. pp. 305-311

[51] Panis G. and Carreon J.R. (2016). Commercial Astaxanthin Production Derived by Green Alga Haematococcus pluvialis: A Microalgae Process Model and a Techno-Economic Assessment all Through Production Line. Algal Research. Vol. 18. pp. 175-190

[52] Montanti J., Nghiem N.P. and Johnston D.B. (2011). Production of Astaxanthin from Cellulosic Biomass Sugars by Mutants of the Yeast Phaffia rhodozyma. Applied Biochemistry and Biotechnology. Vol. 164. No. 5. pp. 655-665

[53] Katsumata T., Ishibashi T. and Kyle D. (2014). A Sub-Chronic Toxicity Evaluation of a Natural Astaxanthin-Rich Carotenoid Extract of Paracoccus carotinifaciens in rats. Toxicology Reports. Vol. 1. pp. 582-588

[54] Shi X.M., Jiang Y. and Chen F. (2002). High-Yield Production of Lutein by the Green Microalga Chlorella protothecoides in Heterotrophic Fed-Batch Culture. Biotechnology Progress. Vol. 18. No. 4. pp. 723-727

[55] S nchez J. F., Fern ndez J. M., Aci n F. G., Rueda A. and P rez-Parra J. (2008). Influence of Culture Conditions on the Productivity and Lutein Content of the New Strain Scenedesmus almeriensis. Process Biochem. Vol. 43. No. 4. pp. 398-405

[56] Graziani G., Schiavo S., Nicolai M.A., Buono S., Fogliano V., Pinto G. and Pollio A. (2013). Microalgae as Human Food: Chemical and Nutritional Characteristics of the Thermo-Acidophilic Microalga Galdieria sulphuraria. Food & Function. Vol. 4. No. 1. pp. 144-152

[57] Rodriguez-Bustamante E., Maldonado-Robledo G., Ortiz M.A., Diaz- valos C. and Sanchez S. (2005). Bioconversion of Lutein Using a Microbial Mixture-Maximizing the Production of Tobacco Aroma Compounds by Manipulation of Culture Medium. Applied Microbiology and Biotechnology. Vol. 68, No. 2. pp. 174-182

[58] Joshi C. and Singhal R.S. (2016). Modelling and Optimization of Zeaxanthin Production by Paracoccus zeaxanthinifaciens ATCC 21588 Using Hybrid Genetic Algorithm Techniques. Biocatalysis and Agricultural Biotechnology. Vol. 8. pp. 238-235

[59] Bhosale P., Larson A.J. and Bernstein P.S. (2004). Factorial Analysis of Tricarboxylic Acid Cycle Intermediates for Optimization of Zeaxanthin Production from Flavobacterium multivorum. Journal of Applied Microbiology. Vol. 96. No. 3. pp. 623-629

[60] Wang C., Kim J.H. and Kim S.W. (2014). Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects. Marine Drugs. Vol. 12. No. 9. pp. 4810-4832

[61] Li Y. and Pfeifer B.A. (2014). Heterologous Production of Plant-Derived Isoprenoid Products in Microbes and the Application of Metabolic Engineering and Synthetic Biology. Current Opinion in Plant Biology. Vol. 19. pp. 8-13

[62] Li X.R., Tian G.Q., Shen H.J. and Liu J.Z. (2014). Metabolic Engineering of Escherichia coli to Produce Zeaxanthin. Journal of Industrial Microbiology & Biotechnology. Vol. 42. No. 4. pp. 627-636

[63] Zhou Y., Nambou K., Wei L., Cao J., Imanaka T. and Hua Q. (2013). Lycopene Production in Recombinant Strains of Escherichia coli is Improved by Knockout of the Central Carbon Metabolism Gene Coding for glucose-6-phosphate Dehydrogenase. Biotechnology Letters. Vol. 35. No. 12. pp. 2137-2145