Effect of *Plumbago indica* Linn. and plumbagin on the expression of hepatic cytochrome P450 2e1 and lung cytochrome P450 2f2 in mice

Waranya Chatuponprasert¹, Nitima Tatiya-aphiradee², Kanokwan Jarukamjorn³*

Received: 28 April 2015; Accepted: 25 July 2015

Abstract

Plumbago indica Linn. (Rose-colored Leadwort) has been used in Thai traditional medicine as anthelminth, appetite stimulant, rubefacient, and abortifacient. Plumbagin, an active constituent of *P. indica*, has been reported to be anti-inflammatory, immunosuppressive, abortifacient, and anti-cancer agents. In this study, methanolic crude extract of *P. indica* and plumbagin were examined for their effects on hepatic cytochrome P450 2e1 (Cyp2e1) and lung cytochrome P450 2f2 (Cyp2f2) in mice.

Plumbago indica Linn. (Rose-colored Leadwort) has been used in Thai traditional medicine as anthelminth, appetite stimulant, rubefacient, and abortifacient. Plumbagin, an active constituent of *P. indica*, has been reported to be anti-inflammatory, immunosuppressive, abortifacient, and anti-cancer agents. In this study, methanolic crude extract of *P. indica* and plumbagin were examined for their effects on hepatic cytochrome P450 2e1 (Cyp2e1) and lung cytochrome P450 2f2 (Cyp2f2) in mice. The crude extract of *Plumbago indica* Linn. and plumbagin were examined for their effects on hepatic cytochrome P450 2e1 (Cyp2e1) and lung cytochrome P450 2f2 (Cyp2f2) in mice.
cytochrome P450 2f2 (Cyp2f2) in mice. The 7-week-old male ICR mice were daily intragastrically administered plumbagin (1, 5, and 15 mg/kg/day) or P. indica extract (20, 200, and 1,000 mg/kg/day) consecutively for 14 days. At 24 hours after the last treatment, total RNA was prepared from liver and lung. The expression of Cyp2e1 and Cyp2f2 mRNA was determined using RT real-time PCR. The expression of hepatic Cyp2e1 mRNA was significantly increased by plumbagin in a dose-dependent pattern whereas it was slightly increased by P. indica extract. The influence of plumbagin and P. indica extract on the expression of lung Cyp2f2 mRNA was nearly similar to those of hepatic Cyp2e1, though it was at the lesser extent. Plumbagin significantly induced the lung Cyp2f2 expression whereas P. indica extract slightly did. These observations suggested that plumbagin and the P. indica extract caused excessive ROS formation and mediated oxidative stress in the mouse livers and lungs. Therefore, the use of plumbagin and/or P. indica contained product as alternative medication is of caveat due to its hepatotoxicity and lung toxicity via the induction of oxidative stress-related Cyp2e1 and Cyp2f2.

Keywords: Plumbago indica, plumbagin, cytochrome P450, Cyp2e1, Cyp2f2

Introduction

Plumbago indica Linn. (Rose-colored Leadwort) is one of important ingredients in many formulations of Thai traditional medicine for the ailments of heart, blood, lung, stomach, and reproductive organs [1-2]. A yellowish quinonoid compound, plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone, Fig. 1A), is the major constituent of P. indica which contributes to their various medicinal properties [1-2], including anthelmintic [2], antimalarial [3], antimicrobial [4], anti-inflammatory [5], immunosuppressive [6], abortifacient [7], anticancer [8-9], and possibly antidiabetic [10]. Despite its medicinal properties, plumbagin was claimed to have several side effects [11] due to its ability as a strong inducer of reactive oxygen species (ROS) and a depleting agent of cellular glutathione [12-13] which contributes to its hepatotoxicity and cytotoxicity [1,11-13]. According to similarity of molecular structure between plumbagin and menadione, a synthetic naphthoquinone (Fig. 1B), which was found to exert toxic effects on several organs including lung and liver in murine via oxidative stress [14], it is likely that plumbagin has similar effect [12]. In addition, styrene-induced lung and liver tumors in mice via metabolism of styrene to 7,8-styrene oxide is critically dependent on metabolism by Cyp2e1 and Cyp2f2, respectively. Therefore, the aim of this study was to examine the impact of P. indica crude extract and plumbagin on the profiles of hepatic Cyp2e1 and lung Cyp2f2, two main cytochrome P450 enzymes responsible for oxidative stress, in mice.

Materials and Methods

Chemicals

Plumbagin was supplied by LKT Laboratories (St. Paul, MN, USA). ReverTraAce® reverse transcriptase was a product of Toyobo Co., Ltd. (Osaka, Japan). Taq DNA polymerase and RNase inhibitor were products of Invitrogen Life Technologies (Carlsbad, CA, USA). SYBR® Green I was from Cambrex Bio Science. (Rockland, ME, USA). The TaqMan® Gene Expression Assays (Invented) for Cyp2e1 (Mm00491127_m1) and CYP2f2 (Mm00484087_m1) were supplied by Applied Biosystems (Branchburg, NJ, USA). All other laboratory chemicals were of the highest available purity from commercial suppliers.

Preparation of the P. indica crude extract

P. indica was bought from the Mor Tong-In Thai Traditional Medicine (Mahasarakam, Thailand) in June, 2014. It was dried at 50°C in a hot air oven then shredded and extracted with methanol using a soxhlet apparatus for 3 hours. The extract was then evaporated and freeze-dried into powder with the yield of 33.40%.
Animal Design and Treatments

Seven-week-old male ICR mice from the National Laboratory Animal Center, Mahidol University (Nakorn Pathom, Thailand) were housed in the Animal Unit, Faculty of Pharmaceutical Sciences, Khon Kaen University (Khon Kaen, Thailand). The animal handling and treatment protocol were approved by the Animal Ethics Committee for Use and Care of Khon Kaen University (AEKKU01/2558) under the supervision of a certified veterinary medical doctor. At all times, the mice were housed on wood shaved bedding in polysulfone cages, with ad libitum access to water and commercial animal diet under the controlled temperature (23±2°C) and humidity (45±2%). The mice were administered 0.5% carboxymethylcellulose (CMC) as vehicle-control, plumbagin in 0.5% CMC (1, 5, and 15 mg/kg/day), or the P. indica extract in 0.5% CMC (20, 200, and 1,000 mg/kg/day) consecutively for 14 days. At 24 hours after the last treatment, the mice were sacrificed, and the livers and lungs were collected for further analysis.

Quantitative determination of hepatic Cyp2e1 and lung Cyp2f2 mRNA expression

Total RNA was prepared using guanidine thiocyanate-phenol-chloroform method [15] and the cDNAs was subsequently synthesized using ReverTraAce® reverse transcriptase under the conditions recommended by the supplier: 25°C for 10 min, 42°C for 60 min, and 95°C for 5 min. The expression of the target mRNA was quantified by real-time PCR [15] using the specific TaqMan® Gene Expression Assay for Cyp2e1 and CYP2f2, or SYBR® Green I with the specific forward (5’-CCTCGTCCCGTAGACAAAAATG-3’) and reverse (5’-TGAAGGGGTGTTATGCATGCCA3’) primers for Gapdh using the real-time PCR system and the software of Bio-Rad® (Hercules, CA, USA). The level of each CYP mRNA was normalized to a reference housekeeping gene, Gapdh.

Statistical Analysis

The data were presented as the mean±SD and analyzed by one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test (SPSS 11.5). Values of p<0.05 were considered to be statistically significant.

Results

The expression of hepatic Cyp2e1 mRNA was significantly increased by plumbagin in a dose-dependent pattern whereas the P. indica extract slightly increased those expressions (Fig. 2). The influence of plumbagin and the P. indica extract on the expression of lung Cyp2f2 mRNA was nearly similar to those of hepatic Cyp2e1 though it was at the less extent. Plumbagin significantly induced the lung Cyp2f2 expression whereas the P. indica extract slightly did (Fig. 3).

Discussion and Conclusion

Hepatic Cyp2e1 metabolizes a variety of small molecules, hydrophobic substrates, and some drugs [16]. From a toxicological study, Cyp2e1 plays an important role in metabolism and activation of many toxicologically important compounds such as ethanol, carbon tetrachloride, acetaminophen, benzene, halothane, and many other halogenated substrates [16]. Cyp2e1 can be induced under a variety of metabolic or nutritional conditions such as chronically obese, overfed rats, and in rats fed a high-fat diet [17]. In addition, Cyp2e1 is the major enzyme in ethanol-induced oxidative stress and is a minor pathway of ethanol oxidation leading to an increase of ROS in hepatocytes [18]. In this study, we found the induction of Cyp2e1 mRNA by plumbagin and P. indica. Hence, the hepatotoxicity via Cyp2e1 induction pathway is of concern.
Effect of Plumbago indica Linn. and plumbagin on the expression of hepatic cytochrome P450 2e1 and lung cytochrome P450 2f2 in mice

Fig. 3. Modified expression of lungCyp2f2 by plumbagin and P. indica extract Plumbagin 1, 5, 15 mg/kg/day; P. indica extract 20, 200, 1000 mg/kg/day; *, ** p<0.05, 0.01 VS control (Non-treatment, NT).

Cyp2f2 is a member of cytochromes P450 family results in a cytotoxicity-driven mode of action in nasal and lung tissue in mice [19]. Coumarin is metabolized by Cyp2f2 to coumarin-3,4-epoxide in mouse lung which can induce mouse lung cytotoxicity and is believed to cause lung tumors [20]. Moreover, Cyp2f2 can activate naphthalene in lung and nasal tissues, leading to bronchiolar cytotoxicity [21]. The induction of Cyp2f2 was presently found. Hence, the Cyp2f2 activation might cause lung toxicity.

These observations suggested that plumbagin and the P. indica extract induced the excessive ROS formation and mediated oxidative stress in the mouse livers and lungs. Therefore, the use of plumbagin and/or the P. indica contained product as alternative medication is of caveat due to its hepatotoxicity and lung toxicity via the induction of oxidative stress and toxicity related to Cyp2e1 and Cyp2f2 activation.

Acknowledgement
The Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen was kindly acknowledged for research grant and facilities.

References

