Molecular Study of the Prevalence of *Leptospira* spp. Serovar *Hardjo* in Blood Samples of Iranian Cattle and Sheep

Faham Khamesipour¹,³* Abbas Doosti² Esmaeil Omrani³

Abstract

Leptospira is an emerging global public health problem which involves both animals and human. The aim of this study was to appraise the presence of *Leptospira* DNA in blood samples from cattle and sheep via Polymerase Chain Reaction (PCR) method in Chaharmahal VaBakhtiari and Isfahan provinces of Iran. One hundred and ninety five samples (92 blood samples of cattle and 103 blood samples of sheep) were collected randomly from clinical healthy animals. DNA was extracted from the blood samples and stored at -20°C before examination. PCR reaction was performed for detection of *Leptospira* DNA using specific primers for 16s rRNA gene and PCR products were visualized in a 1% agarose gel electrophoresis. Results showed that 18.63% of the blood samples were positive. *Leptospiral* DNA was found in 20 of 92 (21.73%) and 16 of 103 (15.53%) of cattle and sheep blood samples, respectively. Nine (9.78%) out of the 92 cattle sampled and 5 (4.85%) out of the 103 sheep sampled were positive for *Leptospira* spp. serovar *Hardjo*. This indicated that these cows and sheep's are reservoirs and dangerous for human health. Moreover, the PCR method is sensitive and specific for diagnosis of *Leptospira* in suspected cases.

Keywords: blood, cattle, Leptospirosis, PCR, prevalence, sheep

¹Young Researchers and Elite Club, Islamic Azad University, Shahrrekord Branch, Shahrrekord, Iran
²Biotechnology Research Center, Islamic Azad University, Shahrrekord Branch, Shahrrekord, Iran
³Under Graduated Student of Veterinary Medicine, Islamic Azad University, Shahrrekord Branch, Shahrrekord, Iran

Correspondence: Dr_Faham@yahoo.com
Introduction

Leptospirosis is an important re-emerging zoonotic disease in tropical and subtropical areas and acute febrile infection and a conveyable bacterial disease of animals and humans caused by pathogenic spirochaetes of the genus Leptospira. Leptospirosis is a emerging global public health problem as it causes increased mortality and morbidity in different countries (Radostitis, 2000; Adler and de la Pena Moctezuma, 2010; Baer et al., 2010; Shafighi et al., 2010; Doosti et al., 2011). These bacteria have the skill to thrive in a wide range of environmental reservoirs, including several mammalian hosts (domestic and wildlife animals) and humans. The causative organisms can be found in cattle, sheep, swine, horse and dogs and can cause chronic tubulointerstitial nephritis, uveitis, mastitis, myocarditis and hemolysis (Haji Hajikolaei et al., 2007; Radostitis et al., 2007; Agampodi et al., 2010). In cattle this infection causes reproductive losses, abortion, barrenness, stillbirthswor weak calves, decrease in milk production, and even death (Levett, 2001; Bharti et al., 2003; Dufour et al., 2008).

Most leptospiral infections in sheep and goat are asymptomatic, however they may result in high fever, abortion, birth of a dead fetus and prenatal death. Affected lambs and kids may manifest fever, hemoglobinuria and jaundice, which may also result in death and all of which cause an economic loss (Ciceroni et al., 2000; Aghaiypour and Safavieh, 2007; Lilienbaum et al., 2008). In human, aserious effect of leptospirosis is the high rate of case fatality because of its most severe complications: severe pulmonary haemorrhage syndrome (50%) (Gouveia et al., 2008) and Weil’s disease (10%) (Bhartiet al., 2003).

In Asia pacific area, Southeast Asia and in Middle East and Latin America it is highly prevalent and there has been a marked enlarges in the total of eruption and cases reported during the last twentyyears (Victoriano et al., 2009; Zakeri et al., 2010). Illness is well kept via chronic carrier hosts that excrete the organism into the environment. Members of the genus Leptospira are conventionally grouped into 2 detached species based on pathogenicity. The pathogens are from the parasitic “interrogans” group, while the no pathogens are from the saprophytic “biflexa” group. Usually, Leptospira interrogans, not Leptospira biflexa can be extracted from the patient’s blood, cerebrospinal fluid, and urine. All the pathogenic leptospires were previously classified as members of the species Leptospira interrogans, though the genus has lately been reorganized and pathogenic leptospires are now recognized in 17 named species and four genomspecies of Leptospira. There are over 200 distinct leptospiral serovars recognized and they are organized in 23 serogroups (Levett et al., 2005; Honarmand et al., 2009).

According to the report of Doosti et al. (2011), the frequency of Leptospiral DNA in liquid rennet samples of aborted bovine was 17 (14.16%) of 120. The results showed a high frequency of Leptospira infection in aborted bovine in Chaharmahal VaBakhtiari province (Doosti et al., 2011). Moreover, Mojtaz et al. (2012) showed that out of 340 samples, 46 (20.9%) and 14 (11.66%) were recognized positive for Leptospira spp.

It is needed and required to improve diagnostic procedures for animal leptospirosis. Leptospiral isolation is costly, very hard and often failed (Lucchesi et al., 2004; Fearnley et al., 2008). Nowadays, for the isolation of bacteria and culture, serologic methods like microscopic agglutination test (MAT), immunofluorescence assay (IFA), enzyme-linked immunosorbent assay (ELISA) and slide agglutination test (SAT), in addition to molecular methods like Polymerase Chain Reaction (PCR), are used for detection of Leptospira. The standard laboratory diagnosis of leptospirosis is using the microscopic agglutination test (MAT). This method depends on antibodies to leptospiral antigens, is time consuming and complicated, and, requires trained personnel (OIE, 2000; Lucchesi et al., 2004; Ahmad et al., 2005; Bomfim et al., 2006).

Serologic examinations do not allow ahead of time leptospiral diagnosis, particularly in infections caused by serovar Hardjo type Hardjo-bovis (Bolin et al., 2003). Therefore PCR is applied as a diagnostic device for the partiality of pathogenic and non-pathogenic (Smythe et al., 2002).

In this study, researchers aimed to investigate prevalence of pathogenic Leptospira spp in blood samples from cattle and sheep with methods of PCR and report the development of PCR detection of Leptospira spp, without the need for prior isolation and culture.

Materials and Methods

Sampling and DNA extraction: In this research, from January 2013 to February 2013, 195 blood samples (via jugular vein) were collected randomly from clinically healthy animals from 92 cows and 103 sheep located in Chaharmahal VaBakhtiari and Isfahan provinces. Five cc of blood was collected from jugular vein of each sheep and cattle. Genomic DNA was extracted from blood specimens by CinnaGen DNA extraction kit (CinnaGen, Iran) as said by the industrialist’s recommendation. The extracted DNA was quantified via spectrophotometric measurement at a wavelength of 260 nm as described by Sambrook and Russell (2001). The extracted DNA of each sample was kept frozen at -20°C until used and delivered to Biotechnology Research Center of Islamic Azad University of Shahrekord.

Table 1 Samples from cattle and sheep blood were positive for Leptospira spp. serovar Hardjo

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>Leptospira spp.</th>
<th>Leptospira serovar Hardjo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (n= 92)</td>
<td>20 (21.73%)</td>
<td>9 (9.78%)</td>
</tr>
<tr>
<td>Sheep (n= 103)</td>
<td>16 (15.53%)</td>
<td>5 (4.85%)</td>
</tr>
</tbody>
</table>
Gene amplification: Species-specific oligonucleotide primers Lp-F: 5'-GCCGCTTAAACATGCAAG-3' and Lp-R: 5'-CTTAACGCTGCTCCCGTA-3' designed from 165 ribosomal RNA gene of *Leptospira* (accession number: JF460977.1) were used for gene amplification.

Leptospira hardjo oligonucleotide primers Lep-haj-F: 5'-TAACCAAGGTAGTGTAGTG-3' and Lep-haj-R: 5'- CTACGATTTACCGCTACAC -3' (accession number: LB12670) were used for gene amplification with Size of 237 bp.

PCR amplification was carried out in an entire volume of 50 μl in 0.5 ml microtubes containing 2 μg of template genomic DNA, 1 μM of each primers, 2 mM MgCl₂, 200 μM dNTP, 5 μl of 10× PCR buffer and 1 unit of Taq DNA polymerase (Roche applied science, Germany). The following conditions of PCR were used for gene amplification: initial denaturation at 95°C for 5 min, followed by 32 cycles of denaturation at 94°C for 1 min, annealing at 58°C for 1 min and extension at 72°C for 1 min. Then, a last extension at 72°C for 5 min was done at the end of the amplification. The PCR amplification products (15 μl) were subjected to electrophoresis in a 1% agarose gel in 1× TBE buffer at 80 v for 30 min and stained with Ethidium Bromide. Then, they were images were obtained in UVIdoc gel documentation systems (Uvitec, UK). The PCR products were identified by 100 bp DNA size marker (Fermentas, Germany). A negative control (sterile water) and a positive control DNA from *Leptospira* ATCC \(43642\) strain were involved in each gel electrophoresis run.

Results and Discussion

One hundred and ninety five cattle and sheep blood samples were examined for the presence of leptospiral DNA. Results of this research showed that 18.63% of the blood samples were positive. Leptospiral DNA was found in 20 of 92 (21.73%) cattle blood samples and Leptospiral DNA was found in 16 of 103 (15.53%) sheep blood samples. Nine (9.78%) out of the 92 cattle sampled and 5 (4.85%) out of the 103 sheep sampled were positive for *Leptospira* spp. serovar *hardjo* (Table 1). This showed that the cows and sheep were reservoirs in dairy herds of Chaharmahal VaBakhtiar and Isfahan provinces. The study of PCR products for the presence of 16S rRNA gene of *Leptospira* on 1% agarose gel revealed a 306 bp fragment (Fig 1). The existence of Leptospiral DNA was detected in the positive control. Moreover, also the positive control showed a target sequence on agarose gel electrophoresis, but no product was observed for negative control.

The results of this research display that 21.73% of the blood samples in of cows and 15.53% of the blood samples of sheep served as a reservoir of disease in dairy farms of Chaharmahal VaBakhtiar and Isfahan district. Consequently, it could be stated that the animal reservoirs increase the risk of potential spread of disease to other animals, especially humans, and this deserves special attention.

The prevalence of leptospiral infection in sheep based on serologic survey has been reported to be 16.8% in Greece (Burriel et al., 2002), 6.1% in Italy (Ciceroni et al., 2000). Another study in Turkey reported that 44.77% of cattle and 8% of sheep reacted to one or more serovar of *L. interrogans* (Ozdemir and Erol, 2002).

![Figure 1 Agarose gel electrophoresis for identification of leptospiral DNA in the bloodsamples of cattle and sheep. Lanes 1 and 2: positive and negative controls, respectively; lane 3: 100 bp DNA ladder (Fermentas, Germany); lanes 4, 5 and 8: positive samples; lanes 6 and 7: negative samples](image-url)
Acknowledgements

The authors would like to express their deep sense of gratitude and sincere thanks to the staff of the Biotechnology Research Center of Islamic Azad University of Shahrekord Branch in Iran.

References

บทคัดย่อ

การศึกษาความชุกทางอนูชีวโมเลกุลของเชื้อ Leptospira spp. serovar Hardjo จากตัวอย่างเลือดโคและแกะในประเทศอิหร่าน

Faham Khamesipour1,3* Abbas Doosti2 Esmaeil Omrani3

เชื้อ Leptospira เป็นสาเหตุของโรคฉี่หนูซึ่งเป็นโรคที่เกี่ยวข้องกับสัตว์และคน วัตถุประสงค์ของการศึกษานี้เพื่อประเมินการตรวจพบ DNA ของเชื้อ Leptospira จากตัวอย่างเลือดโคและแกะจากจังหวัด Chalamahal VaBakhtiari และ Isfahan ในประเทศอิหร่านด้วยวิธี Polymerase Chain Reaction (PCR) ตัวอย่างทั้งหมดจำนวน 195 ตัวอย่าง (ประกอบด้วยเลือดจากโค 92 ตัวและแกะ 103 ตัว) ได้รับแบบสุ่มจากลักษณะที่เรียกว่า DNAสุกแล้วจากตัวอย่างเลือดและเก็บที่ -20 องศาเซลเซียสก่อนการตรวจ ตรวจหา DNA ของเชื้อ Leptospira โดยใช้ primer ที่จำเพาะต่อ 16s rRNA gene ผลร้อยละ 18.63 ของตัวอย่างเลือดให้ผลบวกต่อ DNA ของเชื้อ Leptospira โดยพบในตัวอย่างโคจำนวน 20 ตัวอย่างจากทั้งหมด 92 ตัวอย่าง (ร้อยละ 21.73) และพบในตัวอย่างแกะจำนวน 16 ตัวอย่าง จากทั้งหมด 103 ตัวอย่าง (ร้อยละ 15.53) 9 ตัวอย่างจากตัวอย่างโค 92 ตัวอย่าง และ 5 ตัวอย่างจากตัวอย่างแกะ 103 ตัวอย่าง ตรวจพบ Leptospira spp. serovar hardjo ผลร้อยละ 18.63 ของตัวอย่างเลือดให้ผลบวกต่อ DNA ของเชื้อ Leptospira โดยพบในตัวอย่างโคและแกะ ผลร้อยละ 21.73 และ 15.53 ตามลำดับ ปริมาณ Leptospira spp. serovar hardjo คำสำคัญ: เลือด โค โรคฉี่หนู PCR ความชุก แกะ

1 Young Researchers and Elite Club, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
2 Biotechnology Research Center, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
3 Under Graduated Student of Veterinary Medicine, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran

ผู้รับผิดชอบบทความ E-mail: Dr_Faham@yahoo.com