Detection of elephant endotheliotropic herpesvirus 4 in captive Asian elephants (*Elephas maximus*) in Thailand

Benjaporn Bhusri¹ Parut Suksai¹ Chalisa Mongkolphan¹ Ekasit Tiyanun²
Parntep Ratanakorn¹,³ Kridsada Chaichoun¹,⁴ Ladawan Sariya¹*

Abstract

Elephant endotheliotropic herpesviruses (EEHVs) can cause fatal hemorrhagic disease in elephants, especially young captive Asian elephants (*Elephas maximus*). Currently, seven EEHV types have been reported. In this study, EEHVs were examined in whole-blood samples derived from 56 captive Asian elephants from eight provinces in Thailand by nested PCR using primers specific to the viral DNA polymerase gene in an attempt to monitor EEHV elephant cases. After EEHV testing, one sample (1.78%) was positive and found to be closely related to EEHV4 with 99% amino acid identity. This sample was from a three-year-old female Asian elephant with no clinical signs. These data suggest that asymptomatic EEHV4 infection can occur in Asian elephants.

Keywords: Asian elephant, *Elephas maximus*, EEHV4, elephant endotheliotropic herpesvirus

¹The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
²One Health Animal Clinic, Mahidol University, Nakhon Sawan Campus, Nakhon Sawan 60130, Thailand
³Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
⁴Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
*Correspondence: ladawan.sar@mahidol.ac.th

Introduction

Elephant endotheliotropic herpesvirus (EEHV) is a member of the Proboscivirus genus. The virus is divided into seven groups, namely, EEHV1 to EEHV7 (Davison et al., 2009; Garner et al., 2009; Latimer et al., 2011; Richman et al., 1999; Zong et al., 2015). EEHV5 cause lethal hemorrhagic disease in both Asian (Elephas maximus) and African (Loxodonta africana) elephants, but appear to be more pathogenic in Asian elephants. The majority of cases of fatal hemorrhagic disease in young Asian elephants are caused by EEHV1, EEHV3, EEHV4, and EEHV5 (Bouchard et al., 2014; Sripiboon et al., 2013; Wilkie et al., 2014; Zachariah et al., 2013; Zong et al., 2014). However, EEHV1 and EEHV5 have been reported in healthy Asian elephants (Atkins et al., 2013; Sariya et al., 2012; Stanton et al., 2014), and EEHV2, EEHV3, EEHV6, and EEHV7 have been detected in healthy African elephants (Zong et al., 2015). Multiple EEHV infections have been reported in both Asian and African individual elephants, suggesting that infection with one subtype of EEHV does not prevent them from infection with other subtypes of EEHVs (Stanton et al., 2013; Zong et al., 2015).

Because EEHVs cannot be cultured, polymerase chain reaction (PCR) or real-time PCR-based methods have been used to detect the virus in whole-blood samples, samples of necropsied tissue, conjunctiva swabs, trunk-wash fluid, trunk swabs, or palate samples (Hardman et al., 2012; Latimer et al., 2011; Sariya et al., 2012; Stanton et al., 2014). In the present study, EEHVs were examined in whole-blood samples to monitor susceptible elephants and provide knowledge about status of the disease in Asian elephants in Thailand.

Materials and Methods

Sample collection and genomic DNA extraction: In 2009, whole-blood samples were collected from 56 captive Asian elephants from eight provinces in Thailand. Prior to blood collection, the elephants were controlled by elephant keeper. Ten milliliters of whole blood from the ear vein of each elephant was collected in an EDTA blood collection tube (BD Diagnostic Systems). The practices with elephants in this study were approved by the Animal Care and Use Committee of the Faculty of Veterinary Science, Mahidol University (Protocol no. MUVS 2009-05).

Genomic DNA was extracted from the whole-blood samples using Phenol/Chloroform/Isomyl alcohol. Briefly, 400 µl of lysis buffer (10 mM Tris-HCl, 10 mM EDTA, 50 mM NaCl, 10% SDS, pH 7.5) was added to a tube containing 100 µl of whole blood and then Proteinase K was added to the tube for a final concentration of 200 µg. The tube was incubated at 56°C for 4 hours and then 500 µl of a Phenol/Chloroform/Isomyl alcohol solution (25:24:1) was added to the tube. The tube was mixed by vortex and centrifuged at 10,000 xg for 10 minutes. The aqueous solution on top was placed into a new tube, and an equal volume of the Phenol/Chloroform/Isomyl alcohol solution was added to this tube. The tube was mixed and centrifuged as described above. Next, 1/10 volume of 3M sodium acetate and 2 volume of absolute alcohol were added to the precipitated DNA. The tube was incubated at -20°C for 30 minutes and centrifuged at 10,000 xg for 30 minutes at 4°C. The DNA pellet was washed twice with 500 µl of 70% ethyl alcohol and then air-dried. The DNA pellet was resuspended with 100 µl of nuclease-free water. The DNA samples were kept at -20°C until use.

β-actin detection by real-time PCR: Before detection of EEHVs, the samples were tested for presence of the β-actin housekeeping gene to confirm the quality of the DNA. Primers β-actin-F (5'-CGG GAC CTG ACT GAC TAC CTC-3') and β-actin-R (5'-CCT TAA TGT CAC GCA CGA TTT CC-3') were used to generate a PCR product with a size of 94 bps (Sariya et al., 2012). The real-time SYBR Green I-based PCR mixture contained 2 µl of template DNA, 12.5 µl of 2× QuantiTect SYBR Green PCR (Qiagen), and 0.3 µm each of the forward and reverse primers. Sterile, nuclease-free water was added to bring the mixture to 25 µl. The reactions were carried out in the Chromo4 real-time PCR instrument (BioRad) under the following conditions: 15 minutes at 95°C for initial denaturation, followed by 40 cycles of 15 seconds at 94°C, 30 seconds at 56°C, and 30 seconds at 72°C. After PCR cycling, melting-curve analysis was performed on the amplified PCR product at 50-95°C by increasing the temperature by 0.2°C/3 sec with continuous fluorescence measurement.

EEHV detection by nested PCR: Primers specific to the DNA polymerase gene listed in Table 1 (Latimer et al., 2011; Zong et al., 2015). Nested PCR was performed in a total volume of 25 µl. For the first PCR, the reaction mixture contained 12.5 µl of 2 µl of template DNA, 2.5 µl of 10× Mg2+ free buffer, 1.5 mM of Mg2+ solution, 1 mM of dNTPs, 2.5 units of i-Tag DNA polymerase (iNtRON), and 0.5 µM each of the forward and reverse primers. Sterile, nuclease-free water was added up to 25 µl. The PCR mixture for the second PCR was the same as that used for the first PCR. The PCR parameters for the first and second rounds of PCR are demonstrated in Table 1. For the positive sample, DNA polymerase gene was amplified for a longer product a total of 1,749 bps and confirmed by the di-deoxy dye terminator DNA sequencing method. Deduced amino acid sequence (583 amino acids) was analyzed by the Basic Local Alignment Search Tool (BLAST) program.

Results and Discussion

Asian elephant is listed as an endangered species by the International Union for Conservation of Nature. EEHVs are a critical matter of concern in Asian elephants because infected animals have a mortality rate of up to 85% (Latimer et al., 2011). In this study, 56 samples were tested for EEHV1 to EEHV7. Of the 56 samples, one sample (1.78%) (Elephant no. 12) was positive for primers specific to the viral DNA polymerase gene for EEHV3 or EEHV4. This sample
was from a three-year-old female elephant from Tak province. After sequencing and analysis by the BLAST program to compare the sequences with sequence databases and phylogenetic tree, the sequence of this sample (accession no. KX954609) was found to have 99% amino acid identity with EEHV4 isolate North American NAP69 (accession no. KTS32477.1) and grouped in EEHV4 group (Fig. 1). During blood collection, no clinical signs of illness were observed in the EEHV4-infected elephant. Basic health check and deworming were performed every 6 months for this elephant. Result showed that this elephant had asymptomatic EEHV4 infection. The first fatal case of EEHV4 was reported in a young Asian elephant in 2009 (Garner et al., 2009). Moreover, EEHV4 was first reported in Thailand in a three-year-old male captive-born Asian elephant with hemorrhagic disease (Sripiboon et al., 2013). Furthermore, EEHV4 was found in two young captive Asian elephants in central Thailand. These elephants showed clinical signs or had lesions the viral infection (Lertwatcharasarakul et al., 2015). Previously, four healthy Asian elephants in South India were found to be positive for EEHV when testing was performed using EEHV3/4 primers (Stanton et al., 2014). However, the report did not clearly identify whether the EEHV infection was EEHV3 or EEHV4. Previous reports have shown that EEHV1 viremia can be found in both clinical and subclinical EEHV1 infection. However, DNA of EEHV1 has been detected up to 28 days before the onset of clinical signs (Stanton et al., 2013). Thus, the detection of EEHVs in whole blood may help veterinarians during the initial treatment of infected elephants before the onset of irreversible disease progression. Moreover, the detection of EEHV in blood circulation should be performed during routine health check-up, which will be beneficial to EEHV disease control in herd level.

Table 1 List of primers specific to each EEHV subtype

<table>
<thead>
<tr>
<th>EEHV specific type</th>
<th>Primer name</th>
<th>Sequences 5' to 3'</th>
<th>PCR product size (bp)</th>
<th>Thermal cycler parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEHV1, 2, 4, 5</td>
<td>PAN-EEHV-A1</td>
<td>5' ACA AAC ACG CTG TCR GTR TCY CCR TA 3'</td>
<td>500</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 30 sec at 94 ºC, 30 sec at 58 ºC, and 45 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>PAN-EEHV-B1</td>
<td>5' GTA TTT GAT TTY GCN AGY YTG TAY CC 3'</td>
<td>250</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 15 sec at 94 ºC, 15 sec at 62 ºC, and 30 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>PAN-EEHV-A1</td>
<td>5' ACA AAC ACG CTG TCR GTR TCY CCR TA 3'</td>
<td>500</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 30 sec at 94 ºC, 30 sec at 58 ºC, and 45 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>PAN-EEHV-B2</td>
<td>5' TGY AAY GCC GTN TAY GGA TTY ACC GG 3'</td>
<td>470</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 30 sec at 94 ºC, 30 sec at 60 ºC, and 45 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td>EEHV6</td>
<td>PAN-EEHV-A1</td>
<td>5' ACA AAC ACG CTG TCR GTR TCY CCR TA 3'</td>
<td>500</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 30 sec at 94 ºC, 30 sec at 58 ºC, and 45 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>PAN-EEHV-B1</td>
<td>5' GTA TTT GAT TTY GCN AGY YTG TAY CC 3'</td>
<td>470</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 30 sec at 94 ºC, 30 sec at 60 ºC, and 45 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>PAN-EEHV-B1</td>
<td>5' GTA TTT GAT TTY GCN AGY YTG TAY CC 3'</td>
<td>470</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 30 sec at 94 ºC, 30 sec at 60 ºC, and 45 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>EEEHV6-A2</td>
<td>5' CAT CGA TTT TGA ACT TCT CAT GGT C 3'</td>
<td>390</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 30 sec at 94 ºC, 30 sec at 55 ºC, and 45 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td>EEEHV3 or 4</td>
<td>EEEHV3/4-A1</td>
<td>5' CTG TGA AGG TGT CGC AGA T 3'</td>
<td>250</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 15 sec at 94 ºC, 15 sec at 64 ºC, and 30 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>EEEHV3/4-B1</td>
<td>5' CAG CAT CAT CCA GGC CTA CAA C 3'</td>
<td>390</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 30 sec at 94 ºC, 30 sec at 55 ºC, and 45 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>EEEHV3/4-A1</td>
<td>5' CTG TGA AGG TGT CGC AGA T 3'</td>
<td>250</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 15 sec at 94 ºC, 15 sec at 64 ºC, and 30 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>EEEHV3/4-B2</td>
<td>5' ATC CGC CGG CAG CTG CTG AC 3'</td>
<td>250</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 15 sec at 94 ºC, 15 sec at 64 ºC, and 30 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td>EEHV5</td>
<td>EEEHV5-A1</td>
<td>5' CTA CAT CTA TAC AGA ACT TTC C 3'</td>
<td>500</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 30 sec at 94 ºC, 30 sec at 50 ºC, and 45 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>EEEHV5-B1</td>
<td>5' GTA CCT TAG TTA CGG ACG AGA C 3'</td>
<td>230</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 15 sec at 94 ºC, 15 sec at 58 ºC, and 30 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>EEEHV5-A1</td>
<td>5' CTA CAT CTA TAC AGA ACT TTC C 3'</td>
<td>500</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 30 sec at 94 ºC, 30 sec at 50 ºC, and 45 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>EEEHV5-B2</td>
<td>5' CGC TGT ATA TGG ATT TAC CGG 3'</td>
<td>670</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 15 sec at 94 ºC, 15 sec at 60 ºC, and 30 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td>EEHV7</td>
<td>R1 LGH7906B</td>
<td>5' GTT TCA CGA AGA CCT TGT CTA C 3'</td>
<td>630</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 15 sec at 94 ºC, 15 sec at 56 ºC, and 30 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
<tr>
<td></td>
<td>L1 LGH7924</td>
<td>5' CTT GTG CAA GCC CCA CGT ACG CAC C 3'</td>
<td>630</td>
<td>Denature at 94 ºC for 2 min, 35 cycles of 15 sec at 94 ºC, 15 sec at 56 ºC, and 30 sec at 72 ºC, and terminate at 72 ºC for 7 min</td>
</tr>
</tbody>
</table>
Figure 1 The DNA polymerase phylogram. A portion of deduced amino acid sequences (198 amino acids) of the DNA polymerase was used for phylogeny construction. The numbers show the percentage of times each branch was found in 1,000 bootstrap replicates. The tree was drawn to scale, with branch lengths measured in the number of substitutions per site. The branches with bootstrap values lower than 85% are not shown. The sequence performed in this study is shown in underlined letters.

Acknowledgements

We would like to thank the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University for financial support.

References

บทคัดย่อ

การตรวจหาเชื้อ Elephant Endotheliotropic Herpesvirus 4

ในช้างเอเชียที่เลี้ยงในประเทศไทย

เบญจพร ภูศรี 1 ปรุศก์ สุกใส 1 ชลิสา มงคลพันธ์ 2 เอกสิทธิ์ ติยานันต์ 2
ปานเทพ รัตนากร 1,3 กฤษฎา ใจชื้น 1,4 ลดาวัลย์ สาริยา 1*

เชื้อไวรัสเอ็นเดทีโอเลียติค ไวรัสเฮอร์ปีส (Elephant endotheliotropic herpesviruses: EEHVs) เป็นสาเหตุของการตายอย่างรุนแรงในช้าง แต่เฉพาะในช้างเอเชียที่เลี้ยง (Elephas maximus) ปัจจุบันมีรายงานการพบเชื้อไวรัสเอ็นเดทีโอเลียติคไวรัสในช้างทั้งหมด 7 ชนิด การศึกษาครั้งนี้ทำการตรวจหาเชื้อไวรัสเอ็นเดทีโอเลียติคในเลือด 56 ตัว เป็นการติดต่อมาจาก 8 จังหวัดในประเทศไทย ด้วยเทคนิค nested PCR โดยใช้ฟิลเตอร์ที่จำเพาะกับ DNA polymerase หลังจากที่ตรวจหาเชื้อไวรัสเอ็นเดทีโอเลียติคในตัวอย่างต่างกันกว่า พบว่ามี 1 ตัวอย่าง (คิดเป็นร้อยละ 1.78) ที่ให้ผลบวก โดยมีความเหมือนของลำดับกรดamiนิกับเชื้อ EEHV4 ถึงร้อยละ 99 ตัวอย่างนี้เป็นตัวอย่างที่ได้จากช้างเอเชียอายุ 3 ปีเพศเมีย ที่ไม่แสดงอาการของโรคไวรัสเอ็นเดทีโอเลียติค ผลการศึกษาแสดงให้เห็นว่าการติดเชื้อ EEHV4 แบบไม่แสดงอาการสามารถพบได้ในช้างเอเชีย

คำสำคัญ: Elephant maximus EEHV4 ช้างเอเชีย เชื้อไวรัสเอ็นเดทีโอเลียติค