แก๊สโครมาโทกราฟีที่มีการตรวจวัดแบบเฟลมไอออไนเซชันสำหรับการหาปริมาณอะคริลาไมด์ในมันฝรั่งทอด

Main Article Content

อนุวัฒน์ รัศมีสมศรี
วราวุธ ติยพงศ์พัฒนา

Abstract

Abstract


Acrylamide is a carcinogenic compound that can be formed at high temperature during the cooking process. Acrylamide is a byproduct of the Maillard reaction between the amino group of asparagine and carbonyl groups of reducing sugars. The objective of this work was to develop a quantification method of acrylamide in potato chip using gas chromatography-flame ionization detection (GC-FID). Acrylamide in the samples was extracted with deionized water. Fat, oil, carbohydrate and protein in the water extract were then removed before derivatization with xanthydrol. Finally, the derivative was extracted with anisole and analyzed using GC-FID. Some influential parameters were studied such as sample clean-up, the concentration of xanthydrol and hydrochloric acid, derivatization time and temperature of derivatization, and type of extraction solvent. Under the optimal conditions, the calibration curve was linear in the range of 70-140,000 ng/kg (r2 = 0.9994). Limits of detection and quantitation were 14 and 70 ng/kg, respectively. Acrylamide content in six potato chip samples was analyzed using the developed method and found in the range of 1.52-13.09 µg/kg with the recoveries of 78.10-111.87 %. 


Keywords: gas chromatography; flame ionization detector; acrylamide; xanthydrol; potato chip

Article Details

Section
Physical Sciences
Author Biographies

อนุวัฒน์ รัศมีสมศรี

สาขาวิชาเคมี คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี ประเทศไทย 12120

วราวุธ ติยพงศ์พัฒนา

สาขาวิชาเคมี คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี ประเทศไทย 12120

References

[1] Medeiros Vinci, R., Mestdagh, F. and de Meulenaer, B., 2012, Acrylamide formation in fried potato products: Present and future, a critical review on mitigation strategies, Food Chem. 133: 1138-1154.
[2] Shipp, A., Lawrence, G., Gentry, R., McDonald, T., Bartow, H., Bounds, J., Macdonald, N., Clewell, H., Allen, B. and van Landingham, C., 2006, Acrylamide: Review of toxicity data and dose-response analyses for cancer and noncancer effects, Crit. Rev. Toxicol. 36: 481-608.
[3] US FDA, The 2006 Exposure Assessment for Acrylamide, Available Source: http://www.fda.gov, September 15, 2017.
[4] European Commission, Opinion on the results of the Risk Assessment of: ACRYLAMIDE (Human Health and the Environment), Available Source: http://ec.europa.eu/health/scientific_committees/environmental_risks/opinions/sctee/sct_out88_en.htm, September 15, 2017.
[5] Organization World Health Organization, 2004, Guidelines for drinking-water quality, 3.
[6] European Commission, 1998, European Council Drinking Water Directive, EU 98/83/EC
[7] United States Environmental Protection Agency, 1995, National primary drinking water regulations: Acrylamide, EPA811-f-96-004a-T, 4601.
[8] Thermo Scientific, Fast Determination of Acrylamide in Food Samples Using Accelerated Solvent Extraction Followed by Ion Chromatography with UV or MS Detection, Application Note 409.
[9] Inoue, K., Yoshimura, Y. and Nakazawa, H., 2003, Development of high-performance liquid chromatography-electrospray mass spectrometry with size-exclusion chromatography for determination of acrylamide in fried foods, J. Liq. Chrom. Relat. Tech. 26: 1877-1884.
[10] Zhang, Y., Dong, Y., Ren, Y. and Zhang, Y., 2006, Rapid determination of acrylamide contaminant in conventional fried foods by gas chromatography with electron capture detector, J. Chromatogr. A 1116: 209-216.
[11] Jörgen, R.P. and Jim, O.O., 2003, Soxhlet extraction of acrylamide from potato chips, Analyst 128: 332-334.
[12] Pittet, A., Périsset, A. and Oberson, J.M., 2004, Trace level determination of acrylamide in cereal-based foods by gas chromatography-mass spectrometry, J. Chromatogr. A 1035: 123-130.
[13] Yamini, Y., Ghambarian, M., Esrafili, A., Yazdanfar, N. and Moradi, M., 2012, Rapid determination of ultra-trace amounts of acrylamide contaminant in water samples using dispersive liquid-liquid microextraction coupled to gas chromatography-electron capture detector, Int. J. Environ. Anal. Chem. 92: 1493-1505.
[14] Fernandes, J.O. and Soares, C., 2007, Application of matrix solid-phase dispersion in the determination of acrylamide in potato chips, J. Chromatogr. A 1175: 1-6.
[15] Zhu, Y., Li, G., Duan, Y., Chen, S., Zhang, C. and Li, Y., 2008, Application of the standard addition method for the determination of acrylamide in heat-processed starchy foods by gas chromatography with electron capture detector, Food Chem. 109: 899-908.
[16] Zhang, Y., Zhang, G. and Ying, Z., 2005, Occurrence and analytical methods of acrylamide in heat-treated foods, J. Chromatogr. A 1075: 1-21.
[17] Yamazaki, K., Isagawa, S., Kibune, N. and Urushiyama, T., 2012, A method for the determination of acrylamide in a broad variety of processed foods by GC-MS using xanthydrol derivatization, Food Addit. Contam. A, 29: 705-715.
[18] EMD Millipore Corporation, 2013, Carrez clarification, 1.10537.0001.
[19] Yang, E.Y. and Shin, H.S., 2013, Trace level determinations of carbamate pesticides in surface water by gas chromatography-mass spectrometry after derivatization with 9-xanthydrol, J. Chromatogr. A 1305: 328-332.
[20] Chemguide, The effect of temperature on rates of reaction, Available Source: https://www.chemguide.co.uk/physical/basicrates/temperature.html, October 3, 2017.
[21] Zhang, Y. and Lee, H.K., 2013, Low-density solvent-based vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction combined with gas chromatography-mass spectrometry for the fast determination of phthalate esters in bottled water, J. Chromatogr. A 1274: 28-35.
[22] The Association of Analytical Communities, 2002, AOAC Requirements for Single Laboratory Validation of Chemical Methods.