การคัดเลือกสายพันธุ์ยีสต์ที่ผลิตแคโรทีนอยด์ได้สูงเพื่อผลิตเป็นโปรตีนเซลล์เดี่ยวโดยใช้แหล่งคาร์บอนที่มีราคาถูกเป็นซับสเตรต

Main Article Content

ชุติมา แก้วกระจาย อานนท์ ทวีทรัพย์ วิมลพรรณ รุ่งพรหม

Abstract

Abstract


The six dominant carotenogenic yeast strains were selected from 37 strains of colored yeast. They are named as AQA1-2, AQA4-3, AQA6-4, AQA11-1, AQA14-2 and AQA17-2 which produced 2589±69, 2534±61, 2528±278, 2239±269, 2190±442 and 2755±43 µg/L of carotenoids concentration respectively, after they were cultivated in YM broth with incubated at 30 ˚C, shaking speed of 160 rpm for 96 h. The identification was performed based on nucleotide sequence at D1/D2 region of the large subunit (LSU) rRNA gene.  They were identified as Rhodotorula mucilaginosa, Sakaguchia oryzae, Goffeauzyma aciditolerans, Rhodosporidium toruloides, Cystobasidium calyptogenae and R. paludigena, respectively. Several wastes and by-product from industries such as sugarcane blackstrap molasses, rice straw hydrolysate and crude glycerol were used as low-cost carbon sources for carotenoids, the highest concentration was found from AQA1-2 strain and sugarcane blackstrap molasses was the best for carotenoids production. The optimum conditions were 60 g/L molasses, 0.5 g/L (NH4)2SO4, 0.5 g/L KH2PO4 and 0.5 g/L yeast extract.  The ß-carotene pigment was observed from all strains and other pigments such as torulene and torularhodin were also found by using thin-layer chromatography.  The results of this research can be further studied in advance research and significantly reduce cost for industrial application. 


Keywords: carotenoid; low-carbon source; D1/D2 region; yeast

Keywords

Article Details

Section
วิทยาศาสตร์ชีวภาพ
Author Biographies

ชุติมา แก้วกระจาย

สาขาวิชาจุลชีววิทยา คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏพระนครศรีอยุธยา ถนนปรีดีพนมยงค์ ตำบลประตูชัย อำเภอพระนครศรีอยุธยา จังหวัดพระนครศรีอยุธา 13000

อานนท์ ทวีทรัพย์

สาขาวิชาจุลชีววิทยา คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏพระนครศรีอยุธยา ถนนปรีดีพนมยงค์ ตำบลประตูชัย อำเภอพระนครศรีอยุธยา จังหวัดพระนครศรีอยุธา 13000

วิมลพรรณ รุ่งพรหม

สาขาวิชาเคมี คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏพระนครศรีอยุธยา ถนนปรีดีพนมยงค์ ตำบลประตูชัย อำเภอพระนครศรีอยุธยา จังหวัดพระนครศรีอยุธา 13000

References

[1] Martins, N. and Ferreira, I.C.F.R., 2017, Wastes and by-products: Upcoming sources of carotenoids for biotechnological purposes and health-related applications, Trends Food Sci. Technol. 62: 33-48.
[2] Astorg, P., 1997, Food carotenoids and cancer prevention: An overview of current research, Trends Food Sci. Technol. 8: 406-413.
[3] Gaziano, J.M. and Hennekens, C.H., 1993, The role of beta-carotene in the prevention of cardiovascular disease, Annu. N.Y. Acad. Sci. 691: 148-155.
[4] Krinsky, N.I. and Johnson, E.J., 2005, Carotenoid actions and their relation to health and disease, Mol. Aspects Med. 26: 459-516.
[5 Olson, J. A., 1999, Carotenoids and human health, Archivos Latino-americanos de Nutricion. 49: 7S-11S.
[6] Bhosale, P. and Gadre, R.V., 2001, ß-carotene production in sugarcane molasses by a Rhodotorula glutinis mutant, J. Ind. Microbiol. Biotechnol. 26: 327-332.
[7] Maldonade, I.R., Rodriguez-Amaya, D.B. and Scamparini, A.R.P., 2008, Carotenoids of yeasts isolated from the Brazilian ecosystem, Food Chem. 107: 145-150.
[8] Dufosse, L., Galaup, P., Yaron, A., Arad, S.M., Blanc, P., Murthy, K.N.C. and Ravishankar, G.A., 2005, Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality, Trends Food Sci. Technol. 16: 389-406.
[9] ณิมนาราห์ อยู่คงแก้ว, ปรียานุช เจริญสุข, ปีลดา เชิดชูเกียรติศักดิ์ และธัญนันท์ วรรณธง บรอคเคิลเฮอร์สท์, 2560, มวลชีวภาพและการสะสมแคโรทีนอยด์ในสาหร่ายสีเขียวขนาดเล็กสายพันธุ์ PY202 ภายใต้สภาวะมิกโซโทรฟิก, ว.วิทยาศาสตร์และเทคโนโลยี 25: 591-605.
[10] Simpson, K.L, Chichester, C.O. and Phaff, H.J., 1971, Carotenoid pigments of yeast, In A.H. Rose & J.S. Harrison (Eds.), The yeasts (Vol. 2, pp. 493-515), New York, Academic Press.
[11] Reed, G. and Nagodawithana, T.W., 1991, Yeast Technology. 2nd Ed., An AVI book, New York.
[12] Marova, I., Carnecka, M., Halienova, A., Certik, M., Dvorakova, T. and Haronikova, A., 2012, Use of several waste substrates for carotenoid-rich yeast biomass production, J. Environ. Manage. 95: S338-S342.
[13] Freitas, C., Parreira, T.M., Roseiro, J., Reis, A., de Silva, T.L., 2014, Selecting low-cost carbon sources for carotenoid and lipid production by the pink yeast Rhodosporidium toruloides NCYC 921 using flow cytometry, Bioresour. Technol. 158: 355-359.
[14] Cardoso, L.A.C, Jackel, S., Karp, S.G., Framboisier, X., Chevalot, I. and Marc, I., 2016, Improvement of Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol, Bioresour. Technol. 200: 374-379.
[15] Cheng, Y.T. and Yang, C.F., 2016, Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes, J. Taiwan Inst. Chem. Eng. 61: 270-275.
[16] Garcia, P.A.H., Bueno, A.L., Martinez, G.D.M, Gama, J.R.B., Perez, F.X.P., Ordaz, R.L., and Garcia, J.A.M., 2015, Effects of feeding yeast (Saccharomyces cerevisiae), organic selenium and chromium mixed on growth performance and carcass traits of hair lambs, J. Integr. Agric. 14: 575-582.
[17] Tripathi, M.K, Karim, S.A., 2011, Effect of yeast cultures supplementation on live weight change, rumen fermentation, ciliate protozoa population, microbial hydrolytic enzymes status and slaughtering performance of growing lamb, Livest. Sci. 135: 17-25.
[18] Durmic, Z., Moate, P.J., Eckard, R., Revell, D.K., Williams, R. and Vercoe, P.E., 2013, In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation, J. Sci. Food Agric. 94: 1191-1196.
[19] Elghadour, M.M.Y., Salem, A.Z.M., Martinez Castaneda, J.S., Camacho, L.M., Kholif, A.E. and Vazquez Chagoyan, J.C., 2015, Direct-fed microbes: A tool for improving the utilization of low-quality roughages in ruminants, J. Integr. Agr. 14: 526-533.
[20] Marrero, Y., Castillo, Y., Burrola, E., Lovaina, T. Rosa, C.A., Ruiz, O., Gonzalez, E. and Basso, L.C., 2011, Morphological, biochemical, and molecular identification of the yeast Levica 25: A potential ruminal microbial additive, Global Veterinaria 7: 60-65.
[21] Chaucheyras, F., Walker, N.D., Bach, A., 2008, Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future, Anim. Feed Sci. Technol. 14: 5-26.
[22] Lee, J.H., Lim, Y.B., Koh, J.H., Baig, S.Y., Shin, H.T., 2002, Screening of thermotolerant yeast for use as microbial feed additive, J. Microbiol. Biotechnol. 12: 162-165.
[23] Kurtzman, C.P., and C.J. Robnett., 1998, Identification and phylogeny of ascomycete yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences, Antonie van Leewen hoek. 73: 331-371.
[24] Latha, B.V. and Jeevaratnam, K., 2010, Purification and characterization of the pigments from Rhodotorula glutinis DFR-PDY isolated from natural source, Glob. J. Biotechnol Biochem. 5: 166-174.
[25] Aksu, Z. and Eren, A.T., 2007, Production of carotenoids by the isolated yeast of Rhodotorula glutinis, Biochem. Eng. J. 35: 107-113.
[26] Tangtua, J., 2014, Evaluation and comparison of microbial cells disruption methods for extraction of pyruvate decarboxylase, IFRJ 21: 1331-1336.
[27] Miller, G.L., 1959, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem. 31: 426.
[28] กุสุมาวดี ฐานเจริญ, 2558, การปรับสภาพฟางข้าวเพื่อผลิตไบโอเอทานอลโดยเชื้อ Kluyvero myces marxianus, ว.วิจัยราชภัฏพระนคร 10(2): 123-133.
[29] Schneider, T., Graeff-Honninger, S., French, W.T., Hernandez, R., Merkt, N., Claupein, W., Hetrick, M. and Pham, P., 2013, Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents, Energy 61: 34-43.
[30] Yoo, A.Y., Alnaeeli, M., Park, J.K., 2016, Production control and characterization of antibacterial carotenoids from the yeast Rhodotorula mucilaginosa AY-01, Pro. Biochem. 51: 463-473.
[31] Valduga, E., Ribeiro, A.H.R., Cence, K., Colet, R., Tiggemann, L., Zeni, J. and Toniazzo, G., 2014, Carotenoids production from a newly isolated Sporidiobolus pararoseus strain using agroindustrial substrates, Biocatal. Agric. Biotechnol. 3: 207-213.
[32] Hernandez-Almanza, A., Montanez-Saenz, J., Martinez-Avila, C., Rodriguez-Herrera, R. and Aguilar, C.N., 2014, Carotenoid production by Rhodotorula glutinis YB-252 in solid-state fermentation, Food Biosci. 7: 31-36.
[33] Elsanhoty, R.M., Al-Turki, I.A. and Ramadan, M.F., 2012, Screening of medium components by Plackett-Burman design for carotenoid production using date (Phoenix dactylifera) wastes, Ind. Crop. Prod. 36: 313-320.