การประยุกต์อุปกรณ์ตรวจวัดสีแบบแอลอีดีสำหรับประเมินความสามารถในการต้านออกซิเดชันโดยรวมด้วยวิธีรีดิวซ์เฟอร์ริก

Main Article Content

นันทยา ม่านทอง
สุมนมาลย์ จันทร์เอี่ยม

Abstract

Abstract


This work presents an in-house colorimetric detector based on paired emitter detector diode (PEDD). The colorimetric detector composed of a pair of light emitting diodes (LED). The first LED was used as a light emitter and the second LED was used as a light detector. Then, the constructed colorimetric detector was coupled with a flow injection analysis (FIA) system in order to evaluate the total antioxidant capacity (TAC) by means of ferric reducing antioxidant power (FRAP) assay. When the antioxidant acts as reducing agent to facilitate the reduction of ferric ions, the color change of dark blue solution was monitored. Parameters affected the flow performance, which are color of LED, flow rate and injection volume, were also optimized. The FIA-PEDD system illustrated good performance with linearity range of 10-50 µM. Moreover, high throughput of 90 samples/h was achieved. The proposed method was applied in the analysis of the TAC values of commercial instant herbal beverages. According to the standard ascorbic acid, the TAC value was reported as ascorbic acid equivalent (AAE). It was found that AAE values obtained from our method were comparable with those obtained from the batch methods with a common spectrophotometric detector. 


Keywords: paired emitter detector diode (PEDD); flow injection analysis (FIA); ferric reducing antioxidant power (FRAP); total antioxidant capacity (TAC)

Article Details

Section
Physical Sciences
Author Biographies

นันทยา ม่านทอง

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร ตำบลพระปฐมเจดีย์ อำเภอเมือง จังหวัดนครปฐม 73000

สุมนมาลย์ จันทร์เอี่ยม

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร ตำบลพระปฐมเจดีย์ อำเภอเมือง จังหวัดนครปฐม 73000

References

[1] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C., 1999, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol. Med. 26: 1231-1237.
[2] Arts, M.J.T.J., Dallinga, J.S., Voss, H.P., Haenen, G.R.M.M. and Bast, A., 2004, A new approach to assess the total antioxidant capacity using the TEAC assay, Food Chem. 88: 567-570.
[3] Brand-Williams, W., Cuvelier, M.E. and Berset, C., 1995, Use of a free radical method to evaluate antioxidant activity, LWT Food Sci. Technol. 28: 25-30.
[4] Sharma, O.P. and Bhat, T.K., 2009, DPPH antioxidant assay revisited, Food Chem. 113: 1202-1205.
[5] Benzie, I.F.F. and Szeto, Y.T., 2005, Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay, J. Agric. Food Chem. 47: 633-636.
[6] Firuzi, O., Lacanna, A., Petrucci, R., Marrosu, G., and Saso, L., 2005, Evaluation of the antioxidant activity of flavonoids by ‘ferric reducing antioxidant power’ assay and cyclic voltammetry, Biochim. Biophys. Acta Gen. Subj. 1721: 174-184.
[7] บุหรัน พันธุ์สวรรค์, 2556, อนุมูลอิสระ สารต้านอนุมูลอิสระ และการวิเคราะห์ฤทธิ์ต้านอนุมูลอิสระ, ว.วิทยาศาสตร์และเทคโนโลยี 21: 275-286.
[8] Mieczkowska, E., Koncki, R. and Tymecki, L., 2011, Hemoglobin determination with paired emitter detector diode, Anal. Bioanal. Chem. 399: 3293-3297.
[9] Pokrzywnicka, M., Tymecki, Ł. and Koncki, R., 2012, Low-cost optical detectors and flow systems for protein determination, Talanta 96: 121-126.
[10] Strzelak, K., Koncki, R. and Tymecki, Ł., 2012, Serum alkaline phosphatase assay with paired emitter detector diode, Talanta 96: 127-131.
[11] Tymecki, Ł., Korszun, J., Strzelak, K. and Koncki, R., 2013, Multicommutated flow analysis system for determination of creatinine in physiological fluids by jaffe method, Anal. Chim. Acta 787: 118-125.
[12] Tymecki, Ł., Strzelak, K., and Koncki, R., 2013, Biparametric multicommutated flow analysis system for determination of human serum phosphoesterase activity, Anal. Chim. Acta 797: 57-63.
[13] Michalec, M., Tymecki, Ł. and Koncki, R., 2016, Biomedical analytical monitor of artificial kidney operation: Monitoring of creatinine removal, J. Pharm. Biomed. Anal. 128: 28-34.
[14] Saetear, P., Khamtau, K., Ratanawimarn wong, N., Sereenonchai, K. and Nacapri cha, D., 2013, Sequential injection system for simultaneous determination of sucrose and phosphate in cola drinks using paired emitter-detector diode sensor, Talanta 115: 361-366.
[15] Fiedoruk-Pogrebniak, M. and Koncki, R., 2015, Multicommutated flow analysis system based on fluorescence micro detectors for simultaneous determination of phosphate and calcium ions in human serum, Talanta 144: 184-188.
[16] Lau, K.T., McHugh, E., Baldwin, S. and Diamond, D., 2006, Paired emitter-detector light emitting diodes for the measurement of lead(II) and cadmium(II), Anal. Chim. Acta 569: 221-226.
[17] Rybkowska, N., Koncki, R. and Strzelak, K., 2017, Optoelectronic iron detectors for pharmaceutical flow analysis, J. Pharm. Biomed. Anal. 145: 504-508.
[18] Rybkowska, N., Strzelak, K. and Koncki, R., 2018, A comparison of photometric methods for serum iron determination under flow analysis conditions, Sensors Actuators, B Chem. 254: 307-313.
[19] สุมนมาลย์ จันทร์เอี่ยม, นันทยา ม่านทอง, กมลชนก พูลสวัสดิ์, ศิริภัทร นิติกรนุสรณ์, รัศมี ชัยสุขสันต์ และดวงใจ นาคะปรีชา, 2559, การประเมินความสามารถในการต้านออกซิเดชันด้วยระบบวิเคราะห์การไหลอัตโนมัติร่วมกับส่วนตรวจวัดพีอีดีดีแบบประหยัด, Veridian E-J. 5: 82-92.
[20] Tymecki, Ł., and Koncki, R., 2009, Simplified paired-emitter-detector-diodes -based photometry with improved sensitivity, Anal. Chim. Acta 639: 73-77.
[21] Pisoschi, A.M. and Negulescu, G.P., 2011, Methods for total antioxidant activity determination: A review, Biochem. Anal. Biochem. 1: 1-10.
[22] Miller, J.N. and Miller, J.C., 2005, Statistics and Chemometrics for Analytical Chemistry, 5th Ed., Pearson Education Limited, Gosport.