Purities of Synthesized Ca-Hydroxyapatite Nanoparticle from Budu Residue by Calcination Method and Primary Streptomycin Adsorption

Main Article Content

ฮาซัน ดอปอ พาตีเราะ กูแวะ อิสมะแอ เจ๊ะหลง


This research was to synthesis of hydroxyapatite from budu waste. For the synthesis method, budu waste was removed remaining fish residue by boiling in distilled water for 1 hour, filterred and dried. The dried budu waste was calcined at 900 °C for 12 hours. The white powder of calcium hydroxyapatite [Ca5(PO3)4OH] was obtained containing 71 and 15 percent of calciummagnesium hydrogenphosphate or whitlockite [Ca18Mg2H2(PO3)14] and magnesium phosphate [Mg2(P2O7)], respectively. The result of X-ray diffraction was calculated to have a crystal size of 54 nm with crystal volume of 528.85 A°3. The length of the crystal axis of a and c were 9.4369 A° and 6.85714 A° , respectively. The Infrared spectroscopy showed vibrations at 1,025.94, 601.68 and 548.65 corresponding to PO43-. The vibration band at 371.23 cm-1 was also a vibration of the Ca-O bond, which can be confirmed by the presence of hydroxyapatite crystals. From the streptomycin adsorption, we found that the adsorption efficiency was unstable occurred from interaction with hydroxyapatite resulting in visible light absorption.


Article Details

Research Article


1. ซุลกิปลี ยาบี. (2555). ภูมิปัญญาการทำและการอนุรักษ์น้ำบูดูของกลุ่มชาวบ้านหมู่ 1 ตำบลปะเสยะวอ อำเภอสายบุรี จังหวัดปัตตานี. วิทยานิพนธ์ปริญญาศิลปศาสตรมหาบัณฑิต, มหาวิทยาลัยสุโขทัยธรรมาธิราช.

2. Akram, M. & Ahmed, R. (2014). Extracting Hydroxyapatite and its Precursors from Natural Resources. Journal of Materials Science, 49, 1461-1475.

3. Al-sokanee, Z. N., Toabi, A. A. H., Al-assadi, M. J. & Alassadi. E. A. S. (2009). The Drug Release Study of Ceftriaxone from Porous Hydroxyapatite Scaffolds. American Association of Pharmaceutical Scientists, 10(3), 772–779.

4. Boutinguiza, M. J., Comesaña, P. R., Lusquiños, F., Carlos, A. D. & León, B. (2012). Biological Hydroxyapatite Obtained from Fish Bones. Materials Science & Engineering C, 32(3). 478–486.

5. Daupor, H., Kuwae, P., Wijaya. A. R. Chelong, I. & Haji Samoh, A. (2018). Effect of the Sample Preparation on the Composition of Hydroxyapatite Derived from Waste Anchovy Fish Bone. Proceeding of the Pure and Applied Chemistry International Conference (PACCON 2018), Thailand, 7-9 February 2018.

6. Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, J. M. & Figueiredo, H. (2010). Effect of the Calcination Temperature on the Composition and Microstructure of Hydroxyapatite Derived from Human and Animal Bone. Ceramics International, 36(8), 2383–2393.

7. Goto, T. & Sasaki, K. (2014). Effects of Trace Elements in Fish Bones on Crystal Characteristics of Hydroxyapatite Obtained by Calcination. Ceramics International, 40, 10777–10785.

8. Kumar, G. S., Rajendran, S., Karthi, S., Govindan, R., Girija, E. K., Karunakaran, G. & Kuznetsov, D. (2017). Green Synthesis and Antibacterial Activity of Hydroxyapatite Nanorods for Orthopedic Applications. MRS Communication, 1–6, doi:10.1557/mrc.2017.18.

9. Pal, A., Paul, S., Choudhury, A. R., Balla, V.K., Das, M. & Sinha, A. (2017). Synthesis of Hydroxyapatite from Lates calcarifer Fish Bone for Biomedical Applications. Materials Letters, 203, 89–92.

10. Piccirillo, C. M., Silva, F., Pullar, R. C., Braga, I., Jorge, R., Pintado, M. M. A. & Castro. P.M.L. (2013). Extraction and Characterisation of Apatite- and Tricalcium Phosphate-based Materials from Cod Fish Bones. Materials Science & Engineering C, 33(1), 103–110.